torch.fx量化——以cifar10数据集为例

2024-01-14 11:28

本文主要是介绍torch.fx量化——以cifar10数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 构建需要量化的模型

talk is cheap, show me the code

import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import torchvision
from torchvision import transforms
from torchvision.models.resnet import resnet50, resnet18
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx.graph_module import ObservedGraphModule
from torch.quantization import (get_default_qconfig,
)
from torch import optim
import os
import timedef train_model(model, train_loader, test_loader, device):# The training configurations were not carefully selected.learning_rate = 1e-2num_epochs = 20criterion = nn.CrossEntropyLoss()model.to(device)# It seems that SGD optimizer is better than Adam optimizer for ResNet18 training on CIFAR10.optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5)# optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)for epoch in range(num_epochs):# Trainingmodel.train()running_loss = 0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()# statisticsrunning_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)train_loss = running_loss / len(train_loader.dataset)train_accuracy = running_corrects / len(train_loader.dataset)# Evaluationmodel.eval()eval_loss, eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=device, criterion=criterion)print("Epoch: {:02d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(epoch, train_loss, train_accuracy, eval_loss, eval_accuracy))return modeldef prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])train_set = torchvision.datasets.CIFAR10(root="data", train=True, download=True, transform=train_transform)# We will use test set for validation and test in this project.# Do not use test set for validation in practice!test_set = torchvision.datasets.CIFAR10(root="data", train=False, download=True, transform=test_transform)train_sampler = torch.utils.data.RandomSampler(train_set)test_sampler = torch.utils.data.SequentialSampler(test_set)train_loader = torch.utils.data.DataLoader(dataset=train_set,batch_size=train_batch_size,sampler=train_sampler,num_workers=num_workers,)test_loader = torch.utils.data.DataLoader(dataset=test_set,batch_size=eval_batch_size,sampler=test_sampler,num_workers=num_workers,)return train_loader, test_loaderif __name__ == "__main__":train_loader, test_loader = prepare_dataloader()# first finetune model on cifar, we don't have imagnet so using cifar as testmodel = resnet18(pretrained=True)model.fc = nn.Linear(512, 10)if os.path.exists("r18_row.pth"):model.load_state_dict(torch.load("r18_row.pth", map_location="cpu"))else:train_model(model, train_loader, test_loader, torch.device("cuda"))print("train finished.")torch.save(model.state_dict(), "r18_row.pth")

2. 编写模型量化代码

def quant_fx(model):model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,# 'object_type': []}model_to_quantize = copy.deepcopy(model)prepared_model = prepare_fx(model_to_quantize, qconfig_dict)print("prepared model: ", prepared_model)quantized_model = convert_fx(prepared_model)print("quantized model: ", quantized_model)torch.save(model.state_dict(), "r18.pth")torch.save(quantized_model.state_dict(), "r18_quant.pth")

我们做一个evaluation,来验证一下,在不校准的情况下,精度如何:

def evaluate_model(model, test_loader, device=torch.device("cpu"), criterion=None):t0 = time.time()model.eval()model.to(device)running_loss = 0running_corrects = 0for inputs, labels in test_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)if criterion is not None:loss = criterion(outputs, labels).item()else:loss = 0# statisticsrunning_loss += loss * inputs.size(0)running_corrects += torch.sum(preds == labels.data)eval_loss = running_loss / len(test_loader.dataset)eval_accuracy = running_corrects / len(test_loader.dataset)t1 = time.time()print(f"eval loss: {eval_loss}, eval acc: {eval_accuracy}, cost: {t1 - t0}")return eval_loss, eval_accuracy

evaluation结果:

量化前:eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
量化后(未校准):eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038

可以看到,精度下降严重。此时需要进行一下校准。

3. 编写校准函数代码

def calib_quant_model(model, calib_dataloader):assert isinstance(model, ObservedGraphModule), "model must be a perpared fx ObservedGraphModule."model.eval()with torch.inference_mode():for inputs, labels in calib_dataloader:model(inputs)print("calib done.")

再次eval一下

def quant_calib_and_eval(model):# test only on CPUmodel.to(torch.device("cpu"))model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,# 'object_type': []}model2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)model_int8.load_state_dict(torch.load("r18_quant.pth"))model_int8.eval()a = torch.randn([1, 3, 224, 224])o1 = model(a)o2 = model_int8(a)diff = torch.allclose(o1, o2, 1e-4)print(diff)print(o1.shape, o2.shape)print(o1, o2)get_output_from_logits(o1)get_output_from_logits(o2)train_loader, test_loader = prepare_dataloader()evaluate_model(model, test_loader)evaluate_model(model_int8, test_loader)# calib quant modelmodel2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)torch.save(model_int8.state_dict(), "r18.pth")model_int8.eval()model_prepared = prepare_fx(model2, qconfig_dict)calib_quant_model(model_prepared, test_loader)model_int8 = convert_fx(model_prepared)torch.save(model_int8.state_dict(), "r18_quant_calib.pth")evaluate_model(model_int8, test_loader)
量化前: eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
量化后(未校准)eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038
calib done.
量化后(已校准)eval loss: 0.0, eval acc: 0.8442999720573425, cost: 1.2966759204864502

这篇关于torch.fx量化——以cifar10数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/604997

相关文章

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue