torch.fx量化——以cifar10数据集为例

2024-01-14 11:28

本文主要是介绍torch.fx量化——以cifar10数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 构建需要量化的模型

talk is cheap, show me the code

import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import torchvision
from torchvision import transforms
from torchvision.models.resnet import resnet50, resnet18
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx.graph_module import ObservedGraphModule
from torch.quantization import (get_default_qconfig,
)
from torch import optim
import os
import timedef train_model(model, train_loader, test_loader, device):# The training configurations were not carefully selected.learning_rate = 1e-2num_epochs = 20criterion = nn.CrossEntropyLoss()model.to(device)# It seems that SGD optimizer is better than Adam optimizer for ResNet18 training on CIFAR10.optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5)# optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)for epoch in range(num_epochs):# Trainingmodel.train()running_loss = 0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()# statisticsrunning_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)train_loss = running_loss / len(train_loader.dataset)train_accuracy = running_corrects / len(train_loader.dataset)# Evaluationmodel.eval()eval_loss, eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=device, criterion=criterion)print("Epoch: {:02d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(epoch, train_loss, train_accuracy, eval_loss, eval_accuracy))return modeldef prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])train_set = torchvision.datasets.CIFAR10(root="data", train=True, download=True, transform=train_transform)# We will use test set for validation and test in this project.# Do not use test set for validation in practice!test_set = torchvision.datasets.CIFAR10(root="data", train=False, download=True, transform=test_transform)train_sampler = torch.utils.data.RandomSampler(train_set)test_sampler = torch.utils.data.SequentialSampler(test_set)train_loader = torch.utils.data.DataLoader(dataset=train_set,batch_size=train_batch_size,sampler=train_sampler,num_workers=num_workers,)test_loader = torch.utils.data.DataLoader(dataset=test_set,batch_size=eval_batch_size,sampler=test_sampler,num_workers=num_workers,)return train_loader, test_loaderif __name__ == "__main__":train_loader, test_loader = prepare_dataloader()# first finetune model on cifar, we don't have imagnet so using cifar as testmodel = resnet18(pretrained=True)model.fc = nn.Linear(512, 10)if os.path.exists("r18_row.pth"):model.load_state_dict(torch.load("r18_row.pth", map_location="cpu"))else:train_model(model, train_loader, test_loader, torch.device("cuda"))print("train finished.")torch.save(model.state_dict(), "r18_row.pth")

2. 编写模型量化代码

def quant_fx(model):model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,# 'object_type': []}model_to_quantize = copy.deepcopy(model)prepared_model = prepare_fx(model_to_quantize, qconfig_dict)print("prepared model: ", prepared_model)quantized_model = convert_fx(prepared_model)print("quantized model: ", quantized_model)torch.save(model.state_dict(), "r18.pth")torch.save(quantized_model.state_dict(), "r18_quant.pth")

我们做一个evaluation,来验证一下,在不校准的情况下,精度如何:

def evaluate_model(model, test_loader, device=torch.device("cpu"), criterion=None):t0 = time.time()model.eval()model.to(device)running_loss = 0running_corrects = 0for inputs, labels in test_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)if criterion is not None:loss = criterion(outputs, labels).item()else:loss = 0# statisticsrunning_loss += loss * inputs.size(0)running_corrects += torch.sum(preds == labels.data)eval_loss = running_loss / len(test_loader.dataset)eval_accuracy = running_corrects / len(test_loader.dataset)t1 = time.time()print(f"eval loss: {eval_loss}, eval acc: {eval_accuracy}, cost: {t1 - t0}")return eval_loss, eval_accuracy

evaluation结果:

量化前:eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
量化后(未校准):eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038

可以看到,精度下降严重。此时需要进行一下校准。

3. 编写校准函数代码

def calib_quant_model(model, calib_dataloader):assert isinstance(model, ObservedGraphModule), "model must be a perpared fx ObservedGraphModule."model.eval()with torch.inference_mode():for inputs, labels in calib_dataloader:model(inputs)print("calib done.")

再次eval一下

def quant_calib_and_eval(model):# test only on CPUmodel.to(torch.device("cpu"))model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,# 'object_type': []}model2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)model_int8.load_state_dict(torch.load("r18_quant.pth"))model_int8.eval()a = torch.randn([1, 3, 224, 224])o1 = model(a)o2 = model_int8(a)diff = torch.allclose(o1, o2, 1e-4)print(diff)print(o1.shape, o2.shape)print(o1, o2)get_output_from_logits(o1)get_output_from_logits(o2)train_loader, test_loader = prepare_dataloader()evaluate_model(model, test_loader)evaluate_model(model_int8, test_loader)# calib quant modelmodel2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)torch.save(model_int8.state_dict(), "r18.pth")model_int8.eval()model_prepared = prepare_fx(model2, qconfig_dict)calib_quant_model(model_prepared, test_loader)model_int8 = convert_fx(model_prepared)torch.save(model_int8.state_dict(), "r18_quant_calib.pth")evaluate_model(model_int8, test_loader)
量化前: eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
量化后(未校准)eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038
calib done.
量化后(已校准)eval loss: 0.0, eval acc: 0.8442999720573425, cost: 1.2966759204864502

这篇关于torch.fx量化——以cifar10数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604997

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核