GPT系列训练与部署——Colossal-AI环境配置与测试验证

2024-01-14 07:30

本文主要是介绍GPT系列训练与部署——Colossal-AI环境配置与测试验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        Colossal-AI框架主要特色在于对模型进行并行训练与推理(多GPU),从而提升模型训练效率,可快速实现分布式训练与推理。目前,该框架已集成很多计算机视觉(CV)和自然语言处理(NLP)方向的算法模型,特别是包括GPT和Stable Diffusion等系列大模型的训练和推理。

        本专栏具体更新可关注文章下方公众号,也可关注本专栏。所有相关文章会在《Python从零开始进行AIGC大模型训练与推理》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。相关AIGC模型体验会在RdFast小程序中同步上线。

1 Colossal-AI安装

        Colossal-AI项目地址为“https://github.com/hpcaitech/ColossalAI”。

1.1 环境要求

        Colossal-AI环境要求如下,注意CUDA驱动版本应不小于CUDA套件版本,驱动更新请参考博文《Docker AIGC等大模型深度学习环境搭建(完整详细版)》,地址为“https://blog.csdn.net/suiyingy/article/details/130285920”。

PyTorch >= 1.11 (PyTorch 2.x 正在适配中)
Python >= 3.7
CUDA >= 11.0
NVIDIA GPU Compute Capability >= 7.0 (V100/RTX20 and higher)
Linux OS

1.2 环境安装

        创建一个名称为clai的Python环境(Python3.8),并安装torch 1.12.1。“ -i https://pypi.tuna.tsinghua.edu.cn/simple”表示使用清华镜像进行安装,通常可提高pip install的安装速度。下面示例所使用的是CUDA 11.3版本对应的Pytorch。用户可前往官网选择相应CUDA版本的安装命令,地址为“https://pytorch.org/get-started/previous-versions/”。

conda create -n clai python=3.8
conda activate clai
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113 -i https://pypi.tuna.tsinghua.edu.cn/simple

1.3 Colossal-AI安装

        Colossal-AI可以通过pip install直接安装,例如“pip install colossalai -i https://pypi.tuna.tsinghua.edu.cn/simple”;也可以下载工程后进行编译安装,步骤如下所示:

git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# install dependency
pip install -r requirements/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# install colossalai
pip install .

2 例程验证

        Colossal-AI的教程地址为“https://colossalai.org/docs/get_started/run_demo”,模型示例工程为“https://github.com/hpcaitech/ColossalAI-Examples”。示例工程安装步骤如下所示:

git clone https://github.com/hpcaitech/ColossalAI-Examples.git
cd ColossalAI-Examples
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2.1 ResNet模型训练

        ResNet模型位于ColossalAI-Examples/image/resnet,进入该文件夹下运行如下命令即可开始训练。

cd image/resnet/
# with engine
colossalai run --nproc_per_node 1 train.py
# with trainer
colossalai run --nproc_per_node 1 train.py --use_trainer

 

         程序会默认自动下载CIFAR10手写数字数据集到当前文件夹下的data文件夹,并基于该数据集进行模型训练。如果系统中设置了DATA环境变量,那么数据集将下载至DATA指定目录。

export DATA=/path/to/data
DATA_ROOT = Path(os.environ.get('DATA', './data'))

         

        参数nproc_per_node用于设置GPU的数量,并且可在config.py文件中修改学习率和batch size,通常学习率和batch size的比值保持固定。

new_global_batch_size / new_learning_rate = old_global_batch_size / old_learning rate

        如果训练过程报错“ModuleNotFoundError: No module named 'colossalai._analyzer'”,其解决方式为“cp -r _analyzer/ /path/to/site-packages/colossalai/”,例如“cp -r _analyzer ~/miniconda3/envs/clai/lib/python3.8/site-packages/colossalai/_analyzer”,具体可参考“https://github.com/hpcaitech/ColossalAI/issues/3540”。

        本专栏具体更新可关注文章下方公众号,也可关注本专栏。所有相关文章会在《Python从零开始进行AIGC大模型训练与推理》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。相关AIGC模型体验会在RdFast小程序中同步上线。

这篇关于GPT系列训练与部署——Colossal-AI环境配置与测试验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604390

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

maven私服配置全过程

《maven私服配置全过程》:本文主要介绍maven私服配置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用Nexus作为 公司maven私服maven 私服setttings配置maven项目 pom配置测试效果总结使用Nexus作为 公司maven私