setjmp和longjmp的实现原理与应用

2024-01-14 00:32

本文主要是介绍setjmp和longjmp的实现原理与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在讨论setjmp的实现原理之前,我们先看一个setjmp和longjmp的例子:
#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

static jmp_buf jmpbuf_1;

int g_a = 0;

void test


int main



ret = setjmp;

if

else if

else if


test;

return 0;
}


下面是测试代码在不同的编译优化条件下的执行结果:
wangyao@wangyao-laptop:~/Test/sys$ gcc longjmp.c -O2
wangyao@wangyao-laptop:~/Test/sys$ ./a.out 1
Orig setjmp
Return From longjmp 1
Global_a: 1111
Local_a: 1
wangyao@wangyao-laptop:~/Test/sys$ ./a.out 2
Orig setjmp
Return From longjmp 2
Global_a: 1111
Local_a: 1
wangyao@wangyao-laptop:~/Test/sys$ gcc longjmp.c
wangyao@wangyao-laptop:~/Test/sys$ ./a.out 1
Orig setjmp
Return From longjmp 1
Global_a: 1111
Local_a: 2222
wangyao@wangyao-laptop:~/Test/sys$ ./a.out 2
Orig setjmp
Return From longjmp 2
Global_a: 1111
Local_a: 2222

man 3 longjmp中提到:
The values of automatic variables are unspecified after a call to longjmp if they meet all the following criteria:
  they are local to the function that made the corresponding setjmp call;
  their values are changed between the calls to setjmp and longjmp; and
  they are not declared as volatile.

posix中没有定义自动变量在调用longjmp后的动作。

在调用longjmp后,自动变量、全局变脸、寄存器变量、静态变量和易失变量的变化是不同的。全局变量、静态变量和易失变量的分配要么是在data段,要么是在bss段中,上下文切换对它们基本上没有什么影响;但是对于栈和寄存器来讲,上下文切换就有很大的影响。因此对于一些自动变量、寄存器变量就可能会在longjmp的时候发生变化,当然这个还与编译时候的优化条件有关。


下面再来讨论setjmp和longjmp的实现原理,这里我们只关注x86架构的实现,具体来讲是i386的实现。

首先,回想一下x86架构下面,函数调用过程栈的变化情况:
在x86架构下,调用函数的时候,首先自右向左将压栈,(早期的gcc版本是采用push $变量的方法;后期gcc使用的是sub $num,esp 然后mov $变量,esp+$num的方法)
接下来就是call func了,call func的动作是,将下一指令地址压栈,jmp到func的地址执行。
func刚开始就执行一个push ebp,将原先的栈基址保存下来。

setjmp具体的实现在:
glibc-2.7/sysdeps/i386/setjmp.S
将寄存器中的值保存到jmp_buf中。
ENTRY )
ENTER

movl JMPBUF, %eax
CHECK_BOUNDS_BOTH_WIDE , $JB_SIZE)

/ Save registers. /
movl %ebx,
movl %esi,
movl %edi,
leal JMPBUF, %ecx / Save SP as it will be after we return. /
#ifdef PTR_MANGLE
PTR_MANGLE
#endif
movl %ecx,
movl PCOFF, %ecx / Save PC we are returning to now. /
#ifdef PTR_MANGLE
PTR_MANGLE
#endif
movl %ecx,
LEAVE / pop frame pointer to prepare for tail-call. /
movl %ebp,  / Save caller‘s frame pointer. /

#if defined NOT_IN_libc && defined IS_IN_rtld
/ In ld.so we never save the signal mask. /
xorl %eax, %eax
ret
#else
/ Make a tail call to __sigjmp_save; it takes the same args. /
jmp __sigjmp_save
#endif


longjmp的具体实现在:
glibc-2.7/sysdeps/i386/__longjmp.S
将jmp_buf中的值恢复到相应的寄存器中,并将longjmp的第2个参数作为返回值返回,由于longjmp中将寄存器的eip设置回setjmp时候的值。longjmp的返回值在程序逻辑上就是setjmp的返回值了。
#ifdef PTR_DEMANGLE
movl JBUF, %eax / User‘s jmp_buf in %eax. /
CHECK_BOUNDS_BOTH_WIDE , $JB_SIZE)

/ Save the return address now. /
movl , %edx
/ Get the stack pointer. /
movl , %ecx
PTR_DEMANGLE
PTR_DEMANGLE
cfi_def_cfa
cfi_register
cfi_register
cfi_offset
cfi_offset
cfi_offset
cfi_offset
/ Restore registers. /
movl , %ebx
movl , %esi
movl , %edi
movl , %ebp
cfi_restore
cfi_restore
cfi_restore
cfi_restore

movl VAL, %eax / Second argument is return value. /
movl %ecx, %esp
#else
movl JBUF, %ecx / User‘s jmp_buf in %ecx. /
CHECK_BOUNDS_BOTH_WIDE , $JB_SIZE)

movl VAL, %eax / Second argument is return value. /
/ Save the return address now. /
movl , %edx
/ Restore registers. /
movl , %ebx
movl , %esi
movl , %edi
movl , %ebp
movl , %esp
#endif
/ Jump to saved PC. /
jmp %edx
END )


-----------------------------------------------------------------------------
对于setjmp和longjmp的使用还应该注意一些问题:
setjmp和longjmp函数,这两个函数在跳转时会带信号屏蔽字跳转,在信号处理程序中使用longjmp会导致后来产生的这种信号被屏蔽,无法调用此种信号的信号处理函数。
POSIX.1 也没有具体说明setjmp和longjmp对信号屏蔽字的作用,而是定义了两个新函数: sigsetjmp和siglongjmp。
sigsetjmp在参数为非0的时候,会保存进程的当前信号屏蔽字;在调用siglongjmp的时候,再恢复保存的信号屏蔽字。

一段演示siglongjmp的代码:
#include <signal.h>
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>

/ Jump buffer /
static sigjmp_buf jmpbuf;

/ Signal handler /
static void myfunc


int main

else


/ JUMP /
printf;

return 0;
}
运行结果为:
wangyao@wangyao-laptop:~/Test/sys$ ./a.out
SIGQUIT
I‘m jumped
I‘m here

这篇关于setjmp和longjmp的实现原理与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603331

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali