OpenCV-Python(33):SURF算法

2024-01-13 23:28
文章标签 python 算法 opencv 33 surf

本文主要是介绍OpenCV-Python(33):SURF算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标

  • SUFR 是什么
  • OpenCV 中的SURF

原理

        学习了解过SIFT 算法后我们知道,它是对图像关键点进行检测和描述的,具有尺度不变的特性,但是这种算法的执行速度比较慢,人们需要速度更快的算法。2006年Bay,H.,Tuytelaars,T. 和Van Gool,L 共同提出了SURF(Speeded-Up Robust Features,加速稳健特征)算法。跟它的名字一样,这个算法是加速版的SIFT

        在SIFT 中,Lowe 在构建尺度空间时使用DoG 对LoG 进行近似似。SURF使用盒子滤波器(box_filter)对LoG 进行近似。下图显示了这种近似。在进行卷积运算时可以利用积分图像(积分图像的一大特点是:计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关),是盒子滤波器的一大优点。而且这种计算可以在不同尺度空间同时进行。同样SURF 算法计算关键点的尺度和位置是也是依赖与Hessian 矩阵行列式的。

        为了保证特征矢量具有旋转不变形,需要对于每一个特征点分配一个主要方向。需要以特征点为中心,以6s(s 为特征点的尺度)为半径的圆形区域内,对图像进行 Harr 小波相应运算。这样做实际就是对图像进行梯度运算,但是利用积分图像,可以提高计算图像梯度的效率,为了求取主方向值,需要设计一个以方向为中心,张角为60 度的扇形滑动窗口,以步长为0.2 弧度左右旋转滑动这个窗口并对窗口内的图像Haar 小波的响应值进行累加。主方向为最大的Haar 响应累加值对应的方向。在很多应用中根本就不需要旋转不变性,所以没有必要确定它们的方向,如果不计算方向的话,又可以使算法提速。SURF 提供了成为U-SURF 的功能,它具有更快的速度,同时保持了对+/-15 度旋转的稳定性。OpenCV 对这两种模式同样支持,只需要对参数 upright 设置,当upright 为0 时,计算方向;为1 时不计算方向,同时速度更快。

        生成特征点的特征矢量需要计算图像的Haar 小波响应。在一个矩形的区域内,以特征点为中心,沿主方向将20s*20s 的图像划分成4*4 个子块,每个子块利用尺寸2s 的Haar 小波模版进行响应计算,然后对响应值进行统计,组成向量:,。这个描述符的长度为64。降低的
维度可以加速计算算和匹配,但又能提供更容易区分的特征。

        为了增加特征点的独特性,SURF 提供了一个加强版128 维的特征描述符。当dy 大于0 和小于0 时分别对dx 和|dx| 的和进行计算,计算dy和|dy| 时也进行区分,这样获得特征就会加倍,但又不会增加计算的复杂度。OpenCV 同样提供了这种功能,当参数extended 设置为1 时为128 维,当参数为0 时为64 维,默认情况为128 维。

        在检测特征点的过程中,计算了Hessian 矩阵的行列式,与此同时计算得到了Hessian 矩阵的迹,矩阵的迹为对角元素之和。

        按照亮度的不同,可以将特征点分为两种:第一种为特征点及其周围小邻域的亮度比背景区域更亮,Hessian 矩阵的迹为正,另一种为特征点及其周围小邻域的亮度比背景区域更暗Hessian Hessian 矩阵为负值。根据这个特性,首先对两个特征点的Hessian 的迹比较。如果同号,说明两个特征点具有相同的对比度,如果异号的,说明两个特征点的对比度不同,放弃特征点之间的后续的相似性度量。

        对于两个特征点描述子的相似性度,我们可以用欧氏距离计算。简单来说, SURF 算法使用用了很多方法来对每一步进行优化从而提高速度。分析显示在结果效果相当的情况下,SURF 的速度是SIFT 的3 倍。SURF 善于处理具有模糊和旋转的图像,但是不善于处理视角变化和关照化。 

OpenCV 中的SURF 

        与SIFT 相同OpenCV 也提供了SURF 的相关函数。首先我们要初始化一个SURF 对象,同时设置好可旋参数,64/128 维描述符,Upright/Normal 模式等。所有的细节已经在文档中讲解的很明白了。就像我们在SIFT 中一样,我们可以使用函数SURF.detect()、SURF.compute() 等来进行关间点搀着和描述。首先从查找描述绘制关键点开始。由于和SIFT 一样所以我们的示例在Python 终端中演示。

        在一幅图像中显示699 个关键点太多了。我们把它缩减到50 个再绘制到图片上。在匹配时,我们可能需要所有的这些特征,不过现在还不需要。所以我们现在提高 Hessian 的阈值。 

现在低于50 了,把它们绘制到图像中吧。

img2 = cv2.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img2),plt.show()

结果如下。你会发现SURF 很像一个斑点检测器。它可以检测到蝴蝶翅膀上的白斑。你可以在其他图片中测试一下。 

        现在我们用一下U-SURF,它不会检测关键点的方向 。

        结果如下。所有的关键点的朝向都是一致的。它比前面的快很多。如果你的工作对关键点的朝向没有特别的(如全景图拼接)等,这种方法会更快。 

        最后我们再看看关键点描述符的大小,如果是64 维的就改成128 维。 

        提取到特征之后,接下来要做的就是匹配了。 

 

 

这篇关于OpenCV-Python(33):SURF算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603150

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地