OpenCV-Python(33):SURF算法

2024-01-13 23:28
文章标签 python 算法 opencv 33 surf

本文主要是介绍OpenCV-Python(33):SURF算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标

  • SUFR 是什么
  • OpenCV 中的SURF

原理

        学习了解过SIFT 算法后我们知道,它是对图像关键点进行检测和描述的,具有尺度不变的特性,但是这种算法的执行速度比较慢,人们需要速度更快的算法。2006年Bay,H.,Tuytelaars,T. 和Van Gool,L 共同提出了SURF(Speeded-Up Robust Features,加速稳健特征)算法。跟它的名字一样,这个算法是加速版的SIFT

        在SIFT 中,Lowe 在构建尺度空间时使用DoG 对LoG 进行近似似。SURF使用盒子滤波器(box_filter)对LoG 进行近似。下图显示了这种近似。在进行卷积运算时可以利用积分图像(积分图像的一大特点是:计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关),是盒子滤波器的一大优点。而且这种计算可以在不同尺度空间同时进行。同样SURF 算法计算关键点的尺度和位置是也是依赖与Hessian 矩阵行列式的。

        为了保证特征矢量具有旋转不变形,需要对于每一个特征点分配一个主要方向。需要以特征点为中心,以6s(s 为特征点的尺度)为半径的圆形区域内,对图像进行 Harr 小波相应运算。这样做实际就是对图像进行梯度运算,但是利用积分图像,可以提高计算图像梯度的效率,为了求取主方向值,需要设计一个以方向为中心,张角为60 度的扇形滑动窗口,以步长为0.2 弧度左右旋转滑动这个窗口并对窗口内的图像Haar 小波的响应值进行累加。主方向为最大的Haar 响应累加值对应的方向。在很多应用中根本就不需要旋转不变性,所以没有必要确定它们的方向,如果不计算方向的话,又可以使算法提速。SURF 提供了成为U-SURF 的功能,它具有更快的速度,同时保持了对+/-15 度旋转的稳定性。OpenCV 对这两种模式同样支持,只需要对参数 upright 设置,当upright 为0 时,计算方向;为1 时不计算方向,同时速度更快。

        生成特征点的特征矢量需要计算图像的Haar 小波响应。在一个矩形的区域内,以特征点为中心,沿主方向将20s*20s 的图像划分成4*4 个子块,每个子块利用尺寸2s 的Haar 小波模版进行响应计算,然后对响应值进行统计,组成向量:,。这个描述符的长度为64。降低的
维度可以加速计算算和匹配,但又能提供更容易区分的特征。

        为了增加特征点的独特性,SURF 提供了一个加强版128 维的特征描述符。当dy 大于0 和小于0 时分别对dx 和|dx| 的和进行计算,计算dy和|dy| 时也进行区分,这样获得特征就会加倍,但又不会增加计算的复杂度。OpenCV 同样提供了这种功能,当参数extended 设置为1 时为128 维,当参数为0 时为64 维,默认情况为128 维。

        在检测特征点的过程中,计算了Hessian 矩阵的行列式,与此同时计算得到了Hessian 矩阵的迹,矩阵的迹为对角元素之和。

        按照亮度的不同,可以将特征点分为两种:第一种为特征点及其周围小邻域的亮度比背景区域更亮,Hessian 矩阵的迹为正,另一种为特征点及其周围小邻域的亮度比背景区域更暗Hessian Hessian 矩阵为负值。根据这个特性,首先对两个特征点的Hessian 的迹比较。如果同号,说明两个特征点具有相同的对比度,如果异号的,说明两个特征点的对比度不同,放弃特征点之间的后续的相似性度量。

        对于两个特征点描述子的相似性度,我们可以用欧氏距离计算。简单来说, SURF 算法使用用了很多方法来对每一步进行优化从而提高速度。分析显示在结果效果相当的情况下,SURF 的速度是SIFT 的3 倍。SURF 善于处理具有模糊和旋转的图像,但是不善于处理视角变化和关照化。 

OpenCV 中的SURF 

        与SIFT 相同OpenCV 也提供了SURF 的相关函数。首先我们要初始化一个SURF 对象,同时设置好可旋参数,64/128 维描述符,Upright/Normal 模式等。所有的细节已经在文档中讲解的很明白了。就像我们在SIFT 中一样,我们可以使用函数SURF.detect()、SURF.compute() 等来进行关间点搀着和描述。首先从查找描述绘制关键点开始。由于和SIFT 一样所以我们的示例在Python 终端中演示。

        在一幅图像中显示699 个关键点太多了。我们把它缩减到50 个再绘制到图片上。在匹配时,我们可能需要所有的这些特征,不过现在还不需要。所以我们现在提高 Hessian 的阈值。 

现在低于50 了,把它们绘制到图像中吧。

img2 = cv2.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img2),plt.show()

结果如下。你会发现SURF 很像一个斑点检测器。它可以检测到蝴蝶翅膀上的白斑。你可以在其他图片中测试一下。 

        现在我们用一下U-SURF,它不会检测关键点的方向 。

        结果如下。所有的关键点的朝向都是一致的。它比前面的快很多。如果你的工作对关键点的朝向没有特别的(如全景图拼接)等,这种方法会更快。 

        最后我们再看看关键点描述符的大小,如果是64 维的就改成128 维。 

        提取到特征之后,接下来要做的就是匹配了。 

 

 

这篇关于OpenCV-Python(33):SURF算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/603150

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互