【Databend】行列转化:数据透视和逆透视

2024-01-13 16:52

本文主要是介绍【Databend】行列转化:数据透视和逆透视,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 数据准备
    • 数据透视
    • 数据逆透视
    • 总结

数据准备

学生学科得分等级测试数据如下:

drop table if exists fact_suject_data;
create table if not exists fact_suject_data
(student_id    int          null comment '编号',subject_level varchar null comment '科目等级',subject_level_json variant null comment '科目等级json数据'
);
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (12,'china e,english d,math e','{"china": "e","english": "d","math": "e"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (2,'china b,english b','{"china": "b","english": "b"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (3,'english a,math c','{"english": "a","math": "c"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (4,'china c,math a','{"china": "c","math": "a"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (5,'china d,english a,math c','{"china": "d","english": "a","math": "c"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (6,'china c,english a,math d','{"china": "c","english": "a","math": "d"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (7,'china a,english e,math b','{"china": "a","english": "e","math": "b"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (8,'china d,english e,math e','{"china": "d","english": "e","math": "e"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (9,'china c,english e,math c','{"china": "c","english": "e","math": "c"}');

利用上一篇 【Databend】行列转化:一行变多行和简单分列 文章一行变多行,得到如下效果数据:

select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1
from fact_suject_data as t1
order by t1.student_id;

在这里插入图片描述

数据透视

Databend 中的 pivot 功能可以轻松实现数据透视,使用语法如下:

select ...
from ...pivot ( <aggregate_function> ( <pivot_column> )for <value_column> in ( <pivot_value_1> [ , <pivot_value_2> ... ] ) )
[ ... ]

参数解释如下:

  • <aggregate_function>:用于组合来自 <pivot_column> 的分组值的聚合函数。
  • <pivot_column>:将使用指定的 <aggregate_function> 聚合的列。
  • <value_column>:其唯一值将成为数据透视结果集中的新列。
  • <pivot_value_N>:来自<value_column>的唯一值,将成为透视结果集中的新列。
with a as(select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1from fact_suject_data as t1order by t1.student_id)
select *
from a pivot (max(level1) for subject in ('china','math','english'));

在这里插入图片描述

数据逆透视

Databend 中 unpivot 功能通过将列转换为行,起到数据逆透视效果。它是一个关系运算符,接受两列(来自表或子查询)以及列列表,并为列表中指定的每列生成一行。使用语法如下:

select ...
from ...unpivot ( <value_column>for <name_column> in ( <column_list> ) )
[ ... ]

参数解释:

  • <value_column>:将存储从<column_list>中列出的列中提取的值的列。
  • <name_column>:将存储提取值的列名称的列。
  • <column_list>:要旋转的列列表,用逗号分隔。

利用数据透视的结果,使用 unpivot 恢复原样实现数据逆透视。

with a as(select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1from fact_suject_data as t1order by t1.student_id),b as(select *from a pivot (max(level1) for subject in ('china','math','english')) )
select *
from b unpivot (level2 for subject in (`china`,`math`,`english`));

在这里插入图片描述

总结

Databend 的 pivot 和 unpivot 功能更好地实现数据的透视和逆透视,并且非常易读和分析大量数据,相较于 Mysql 实现数据透视 (case …when…) 和逆透视 (union all) 来说更简单易读,方法不闲多主要是解决实际问题,学习了解更多方法和工具,在面对问题时也能更好的应对,赶紧实操起来,当遇到也能很自信地说“这题我会”。

参考资料:

  • Mysql 行列变换《你想要的都有》:https://blog.csdn.net/weixin_50357986/article/details/134161183
  • Databend Query Pivot:https://docs.databend.com/sql/sql-commands/query-syntax/query-pivot
  • Databend Query UnPivot:https://docs.databend.com/sql/sql-commands/query-syntax/query-unpivot
  • Databend 行列转化:一行变多行和简单分列:https://blog.csdn.net/weixin_50357986/article/details/135568736

这篇关于【Databend】行列转化:数据透视和逆透视的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/602149

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock