【Databend】行列转化:数据透视和逆透视

2024-01-13 16:52

本文主要是介绍【Databend】行列转化:数据透视和逆透视,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 数据准备
    • 数据透视
    • 数据逆透视
    • 总结

数据准备

学生学科得分等级测试数据如下:

drop table if exists fact_suject_data;
create table if not exists fact_suject_data
(student_id    int          null comment '编号',subject_level varchar null comment '科目等级',subject_level_json variant null comment '科目等级json数据'
);
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (12,'china e,english d,math e','{"china": "e","english": "d","math": "e"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (2,'china b,english b','{"china": "b","english": "b"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (3,'english a,math c','{"english": "a","math": "c"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (4,'china c,math a','{"china": "c","math": "a"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (5,'china d,english a,math c','{"china": "d","english": "a","math": "c"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (6,'china c,english a,math d','{"china": "c","english": "a","math": "d"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (7,'china a,english e,math b','{"china": "a","english": "e","math": "b"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (8,'china d,english e,math e','{"china": "d","english": "e","math": "e"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (9,'china c,english e,math c','{"china": "c","english": "e","math": "c"}');

利用上一篇 【Databend】行列转化:一行变多行和简单分列 文章一行变多行,得到如下效果数据:

select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1
from fact_suject_data as t1
order by t1.student_id;

在这里插入图片描述

数据透视

Databend 中的 pivot 功能可以轻松实现数据透视,使用语法如下:

select ...
from ...pivot ( <aggregate_function> ( <pivot_column> )for <value_column> in ( <pivot_value_1> [ , <pivot_value_2> ... ] ) )
[ ... ]

参数解释如下:

  • <aggregate_function>:用于组合来自 <pivot_column> 的分组值的聚合函数。
  • <pivot_column>:将使用指定的 <aggregate_function> 聚合的列。
  • <value_column>:其唯一值将成为数据透视结果集中的新列。
  • <pivot_value_N>:来自<value_column>的唯一值,将成为透视结果集中的新列。
with a as(select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1from fact_suject_data as t1order by t1.student_id)
select *
from a pivot (max(level1) for subject in ('china','math','english'));

在这里插入图片描述

数据逆透视

Databend 中 unpivot 功能通过将列转换为行,起到数据逆透视效果。它是一个关系运算符,接受两列(来自表或子查询)以及列列表,并为列表中指定的每列生成一行。使用语法如下:

select ...
from ...unpivot ( <value_column>for <name_column> in ( <column_list> ) )
[ ... ]

参数解释:

  • <value_column>:将存储从<column_list>中列出的列中提取的值的列。
  • <name_column>:将存储提取值的列名称的列。
  • <column_list>:要旋转的列列表,用逗号分隔。

利用数据透视的结果,使用 unpivot 恢复原样实现数据逆透视。

with a as(select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1from fact_suject_data as t1order by t1.student_id),b as(select *from a pivot (max(level1) for subject in ('china','math','english')) )
select *
from b unpivot (level2 for subject in (`china`,`math`,`english`));

在这里插入图片描述

总结

Databend 的 pivot 和 unpivot 功能更好地实现数据的透视和逆透视,并且非常易读和分析大量数据,相较于 Mysql 实现数据透视 (case …when…) 和逆透视 (union all) 来说更简单易读,方法不闲多主要是解决实际问题,学习了解更多方法和工具,在面对问题时也能更好的应对,赶紧实操起来,当遇到也能很自信地说“这题我会”。

参考资料:

  • Mysql 行列变换《你想要的都有》:https://blog.csdn.net/weixin_50357986/article/details/134161183
  • Databend Query Pivot:https://docs.databend.com/sql/sql-commands/query-syntax/query-pivot
  • Databend Query UnPivot:https://docs.databend.com/sql/sql-commands/query-syntax/query-unpivot
  • Databend 行列转化:一行变多行和简单分列:https://blog.csdn.net/weixin_50357986/article/details/135568736

这篇关于【Databend】行列转化:数据透视和逆透视的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/602149

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语