对卷积神经网络、池化层、反卷积以及Text-CNN原理的理解

2024-01-13 15:08

本文主要是介绍对卷积神经网络、池化层、反卷积以及Text-CNN原理的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天,我们来讨论一下卷积,以及卷积神经网络,这里边具体怎么运算的,请看下面分析:

首先选取知乎上对卷积物理意义解答排名最靠前的回答。 然后再来看分析卷积神经网络

1、卷积

来自知乎的优秀回答!
不推荐用“反转/翻转/反褶/对称”等解释卷积。好好的信号为什么要翻转?导致学生难以理解卷积的物理意义。
这个其实非常简单的概念,国内的大多数教材却没有讲透。

卷积是分析数学中一种重要的运算。设: f(x)、 g(x)是R 上的两个可积函数,作积分:
在这里插入图片描述

直接看图,不信看不懂。以离散信号为例,连续信号同理。
已知x[0] = a, x[1] = b, x[2]=c
在这里插入图片描述
已知y[0] = i, y[1] = j, y[2]=k
在这里插入图片描述
下面通过演示求x[n] * y[n]的过程,揭示卷积的物理意义。

第一步,x[n]乘以y[0]并平移到位置0

在这里插入图片描述
第二步,x[n]乘以y[1]并平移到位置1:
在这里插入图片描述
第三步,x[n]乘以y[2]并平移到位置2:
在这里插入图片描述
最后,把上面三个图叠加,就得到了x[n] * y[n]:
在这里插入图片描述
从这里,可以看到卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。重复一遍,这就是卷积的意义:加权叠加。对于线性时不变系统,如果知道该系统的单位响应,那么将单位响应和输入信号求卷积,就相当于把输入信号的各个时间点的单位响应 加权叠加,就直接得到了输出信号。

通俗的说:在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。这正是单位响应是如此重要的原因。

2、卷积神经网络

原文参考:http://www.jeyzhang.com/cnn-learning-notes-1.html

概述

卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的前期预处理过程(提取人工特征等),可以直接输入原始图像。

图像处理中,往往会将图像看成是一个或多个的二维向量,如之前博文中提到的MNIST手写体图片就可以看做是一个28 × 28的二维向量(黑白图片,只有一个颜色通道;如果是RGB表示的彩色图片则有三个颜色通道,可表示为三张二维向量)。传统的神经网络都是采用全连接的方式,即输入层到隐藏层的神经元都是全部连接的,这样做将导致参数量巨大,使得网络训练耗时甚至难以训练,而CNN则通过局部连接、权值共享等方法避免这一困难,有趣的是,这些方法都是受到现代生物神经网络相关研究的启发(感兴趣可阅读以下部分)。

在这里插入图片描述

下面重点介绍下CNN中的局部连接(Sparse Connectivity)和权值共享(Shared Weights)方法,理解它们很重要。

2.1 局部连接与权值共享

下图是一个很经典的图示,左边是全连接,右边是局部连接。
在这里插入图片描述
对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此数目巨大的参数几乎难以训练;而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级。

尽管减少了几个数量级,但参数数量依然较多。能不能再进一步减少呢?能!方法就是权值共享。具体做法是,在局部连接中隐藏层的每一个神经元连接的是一个10 × 10的局部图像,因此有10 × 10个权值参数,将这10 × 10个权值参数共享给剩下的神经元,也就是说隐藏层中10^6个神经元的权值参数相同,那么此时不管隐藏层神经元的数目是多少,需要训练的参数就是这 10 × 10个权值参数(也就是卷积核(也称滤波器)的大小),如下图。
在这里插入图片描述
这大概就是CNN的一个神奇之处,尽管只有这么少的参数,依旧有出色的性能。但是,这样仅提取了图像的一种特征,如果要多提取出一些特征,可以增加多个卷积核,不同的卷积核能够得到图像的不同映射下的特征,称之为Feature Map。如果有100个卷积核,最终的权值参数也仅为100 × 100 = 10^4个而已。另外,偏置参数也是共享的,同一种滤波器共享一个。

卷积神经网络的核心思想是:局部感受野(local field),权值共享以及时间或空间亚采样这三种思想结合起来,获得了某种程度的位移、尺度、形变不变性(?不够理解透彻?)。

2.2 网络结构

下图是一个经典的CNN结构,称为LeNet-5网络。
在这里插入图片描述

2.3 卷积层

卷积层是卷积核在上一级输入层上通过逐一滑动窗口计算而得,卷积核中的每一个参数都相当于传统神经网络中的权值参数,与对应的局部像素相连接,将卷积核的各个参数与对应的局部像素值相乘之和,(通常还要再加上一个偏置参数),得到卷积层上的结果。如下图所示。
在这里插入图片描述
下面的动图能够更好地解释卷积过程:
在这里插入图片描述

2.4 池化/采样层

通过卷积层获得了图像的特征之后,理论上我们可以直接使用这些特征训练分类器(如softmax),但是这样做将面临巨大的计算量的挑战,而且容易产生过拟合的现象。为了进一步降低网络训练参数及模型的过拟合程度,我们对卷积层进行池化/采样(Pooling)处理。池化/采样的方式通常有以下两种:

1、Max-Pooling: 选择Pooling窗口中的最大值作为采样值;
2、Mean-Pooling: 将Pooling窗口中的所有值相加取平均,以平均值作为采样值

如下图所示。
在这里插入图片描述

2.5 LeNet-5网络详解

以上较详细地介绍了CNN的网络结构和基本原理,下面介绍一个经典的CNN模型:LeNet-5网络。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
LeNet-5网络在MNIST数据集上的结果
在这里插入图片描述

3 池化层和padding的理解

3.1 池化层的理解

参考来源:https://www.cnblogs.com/eilearn/p/9282902.html
  pooling池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。另外一点值得注意:pooling也可以提供一些旋转不变性。

池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避免过拟合的出现;一方面进行特征压缩,提取主要特征。
  最大池采样在计算机视觉中的价值体现在两个方面:(1)、它减小了来自上层隐藏层的计算复杂度;(2)、这些池化单元具有平移不变性,即使图像有小的位移,提取到的特征依然会保持不变。由于增强了对位移的鲁棒性,这样可以忽略目标的倾斜、旋转之类的相对位置的变化,以此提高精度,最大池采样方法是一个高效的降低数据维度的采样方法。
  需要注意的是:这里的pooling操作是特征图缩小,有可能影响网络的准确度,因此可以通过增加特征图的深度来弥补(这里的深度变为原来的2倍)。

在CNN网络中卷积池之后会跟上一个池化层,池化层的作用是提取局部均值与最大值,根据计算出来的值不一样就分为均值池化层与最大值池化层,一般常见的多为最大值池化层。池化的时候同样需要提供filter的大小、步长。

tf.nn.max_pool(value, ksize, strides, padding, name=None)
  参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取’VALID’ 或者’SAME’

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

举例:池化输出特征图计算和卷积计算公式相同,区别是池化是求卷积区域中的max,不涉及卷积计算。

(1)pooling(kernel size 2×2,padding 0,stride 2) 323216->pooling之后(32-2+0)/2 + 1 =16*16

pool3 = tf.nn.max_pool(layer3,[1,2,2,1],[1,2,2,1],padding=‘SAME’) // p = (f-1)/2=(2-1)/2=0,所以padding='SAME’或“VALID”输出一样

(2)pooling(kernel size 3×3,padding 0,stride 1) 323216->pooling之后(32-3+0)/1 + 1 = 30*30

pool3 = tf.nn.max_pool(layer3,[1,3,3,1],[1,1,1,1])

3.2 padding的理解

之前在讨论卷积神经网络的时候,我们是使用filter来做元素乘法运算来完成卷积运算的。目的是为了完成探测垂直边缘这种特征。但这样做会带来两个问题。

卷积运算后,输出图片尺寸缩小;
越是边缘的像素点,对于输出的影响越小,因为卷积运算在移动的时候到边缘就结束了。中间的像素点有可能会参与多次计算,但是边缘像素点可能只参与一次。所以我们的结果可能会丢失边缘信息。
  那么为了解决这个问题,我们引入padding, 什么是padding呢,就是我们认为的扩充图片, 在图片外围补充一些像素点,把这些像素点初始化为0.

padding的用途:

(1)保持边界信息,如果没有加padding的话,输入图片最边缘的像素点信息只会被卷积核操作一次,但是图像中间的像素点会被扫描到很多遍,那么就会在一定程度上降低边界信息的参考程度,但是在加入padding之后,在实际处理过程中就会从新的边界进行操作,就从一定程度上解决了这个问题。

(2)可以利用padding对输入尺寸有差异图片进行补齐,使得输入图片尺寸一致。

(3)卷积神经网络的卷积层加入Padding,可以使得卷积层的输入维度和输出维度一致。

(4)卷积神经网络的池化层加入Padding,一般都是保持边界信息和(1)所述一样。

padding模式:SAME和VALID

SAME:是填充,填充大小, p = (f-1)/2;VALID:是不填充,直接计算输出。

3.3 池化层的公式计算

输入数据维度为W*W
Filter大小 F×F
步长 S
padding的像素数 P

可以得出
N = (W − F + 2P )/S+1

输出大小为 N×N

4.反卷积

前面已经介绍了卷积是如何运算的,接下来介绍反卷积。

卷积可以转化为一副图像与一个矩阵C的乘积。
反卷积(转置卷积)只是正向时左乘CT,而反向时左乘(CT)^T。
知乎上的高票答案:https://www.zhihu.com/question/43609045
动态图片:https://github.com/vdumoulin/conv_arithmetic

5.Text-CNN的原理

1.简介
TextCNN 是利用卷积神经网络对文本进行分类的算法,由 Yoon Kim 在 “Convolutional Neural Networks for Sentence Classification” 一文 中提出. 是2014年的算法.
文章:https://arxiv.org/pdf/1408.5882.pdf
在这里插入图片描述
详细大家请点击这里,总结的很好!

此外,也对于卷积网络,大家也可以参考:
https://blog.csdn.net/v_july_v/article/details/51812459

这篇关于对卷积神经网络、池化层、反卷积以及Text-CNN原理的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601869

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

深入理解MySQL流模式

《深入理解MySQL流模式》MySQL的Binlog流模式是一种实时读取二进制日志的技术,允许下游系统几乎无延迟地获取数据库变更事件,适用于需要极低延迟复制的场景,感兴趣的可以了解一下... 目录核心概念一句话总结1. 背景知识:什么是 Binlog?2. 传统方式 vs. 流模式传统文件方式 (非流式)流

深入理解Go之==的使用

《深入理解Go之==的使用》本文主要介绍了深入理解Go之==的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录概述类型基本类型复合类型引用类型接口类型使用type定义的类型不可比较性谈谈map总结概述相信==判等操作,大

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS