OpenCV-Python(35):BRIEF算法

2024-01-12 18:44
文章标签 python 算法 opencv 35 brief

本文主要是介绍OpenCV-Python(35):BRIEF算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法介绍

        BRIEF(Binary Robust Independent Elementary Features)是一种用于计算机视觉中特征点描述子的算法。它是一种二进制描述子,通过比较图像上不同位置的像素值来生成特征点的描述子。

        BRIEF算法的基本思想是选取一组固定的像素对,并比较这些像素对之间的亮度差异。对于每一个像素对,如果第一个像素的亮度大于第二个像素的亮度,则将该像素对的比较结果设为1,否则设为0。将所有像素对的比较结果串联起来,就得到了该特征点的二进制描述子。

        BRIEF算法的优点是计算速度快、内存消耗小,适用于实时应用和资源受限的设备。然而,由于BRIEF算法只比较像素的亮度差异,而没有考虑像素的空间关系,因此对于图像的旋转、尺度变化等变换不具有鲁棒性

        实际应用中,为了提高BRIEF算法的鲁棒性,通常会结合其他方法来使用,比如使用FAST算法或Harris角点检测等方法来检测特征点,然后再使用BRIEF算法生成特征点的描述子。

背景说明

        我们知道,SIFT 算法使用的是128 维的描述符。由于它是使用的浮点数,所以需要使用512 个字节。同样SURF 算法最少使用256 个字节,因为至少是64 为维描述符。创建一个包含上千个特征的向量需要消耗大量的内存,在嵌入式等资源有限的设备上这样是不合适的,因为匹配时也会消耗更多的内存和时间。

        实际的匹配过程中,如此多的维度是没有必要的。我们可以使用PCA,LDA 等方法来进行降维。甚至可以使用LSH(局部敏感哈希)将SIFT 浮点数的描述符转换成二进制字符串。对这些字符串再使用汉明距离进行匹配。汉明距离的计算只需要 XOR 位运算以及位计数,这种计算算很适合在现代的CPU 上运行。但我们还是需要先找到描述符才能使用哈希,这不能解决最初的内存消耗问题。

        BRIEF 算法应运而生。它不去计算描述符而是直接找到一个二进制字符串。这种算法使用的是已经平滑后的图像,它会按照一种特定的方式选取一组像素点对nd (x,y),然后在这些像素点对之间进行灰度值对比。例如,第一个点对的灰度值分别为p 和q。如果p 小于q,结果就是1,否则就是0。就这样对nd个点对进行对比得到一个nd 维的二进制字符串。

        nd 可以是128,256,512。OpenCV 对这些都提供了支持,但在默认情况下是256(OpenC 是使用字节表示它们的,所以􄦈这些值分别对应与16、32、64)。当我们获得这些二进制字符串之后就可以使用汉明距离对它们匹配了。

        非常重要的一点是:BRIEF 是一种特征描述符,它不提供查找特征的方法。所以我们不得不使用其他特征检测器,比如SIFT 和SURF 等。原始文献推荐使用CenSurE 特征检测器,这种算法很快。而且BRIEF 算法对CenSurE关键点的描述效果比SURF 关键点的描述更好。

        简单来说, BRIEF 是一种对特征点描述符计算和匹配的快速方法。这种算法可以实现很高的识别率,除非出现平面内的大旋转。

OpenCV 中的BRIEF

        下面的代码使用了CenSurE 特征检测器和BRIEF 描述符。在OpenCV中CenSurE 检测器被叫做STAR 检测器。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('simple.jpg',0)# Initiate STAR detector
star = cv2.FeatureDetector_create("STAR")# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")# find the keypoints with STAR
kp = star.detect(img,None)# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)print (brief.getInt('bytes'))
print (des.shape)

        函数brief.getInt(′bytes′) 会以字节格式给出nd 的大小,默认值为32。 

如果opencv版本不同,可能会报错,可以尝试以下代码:

在Python的OpenCV中,可以使用cv2.xfeatures2d.BriefDescriptorExtractor_create()函数来创建BRIEF算法的特征点描述子生成器。

以下是一个简单的示例代码,展示了如何在Python的OpenCV中使用BRIEF算法生成特征点的描述子:

import cv2# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 创建BRIEF算法的特征点检测器和描述子生成器
detector = cv2.FastFeatureDetector_create()
descriptor = cv2.xfeatures2d.BriefDescriptorExtractor_create()# 检测图像中的特征点
keypoints = detector.detect(image, None)# 计算特征点的描述子
_, descriptors = descriptor.compute(image, keypoints)# 打印特征点数目和描述子的维度
print('Number of keypoints:', len(keypoints))
print('Descriptor size:', descriptors.shape[1])

在这个示例中,首先使用cv2.imread()函数读取了一幅灰度图像。然后,使用cv2.FastFeatureDetector_create()函数创建了一个FAST算法的特征点检测器,并使用cv2.xfeatures2d.BriefDescriptorExtractor_create()函数创建了一个BRIEF算法的特征点描述子生成器。接下来,使用特征点检测器检测图像中的特征点,并使用描述子生成器计算特征点的描述子。最后,使用len()函数获取特征点的数目,使用shape[1]获取描述子的维度,并打印出来。

需要注意的是,需要安装OpenCV的Python模块和对应的xfeatures2d模块。可以使用以下命令来安装:

pip install opencv-python
pip install opencv-contrib-python

以上代码仅仅是一个简单的示例,实际应用中可能需要根据具体情况进行参数调整和错误处理。

这篇关于OpenCV-Python(35):BRIEF算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598819

相关文章

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模