【数字人】9、DiffTalk | 使用扩散模型基于 audio-driven+对应人物视频 合成说话头(CVPR2023)

本文主要是介绍【数字人】9、DiffTalk | 使用扩散模型基于 audio-driven+对应人物视频 合成说话头(CVPR2023),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

论文:DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation

代码:https://sstzal.github.io/DiffTalk/

出处:CVPR2023

特点:需要音频+对应人物的视频来合成新的说话头视频,嘴部抖动严重

一、背景

talking head 合成任务相关的工作最近都集中于提升合成视频的质量或者提升模型的泛化性,很少有工作聚焦于同时提升这两个方面,而这对实际的使用很重要

所以,本文作者引入扩散模型来实现 audio-driven talking head,同时使用的声音信号、面部、关键点来作为驱动信号,可以在不同的的说话人上进行泛化

当前的研究现状:

  • 2D:主要是基于 GAN 来实现 audio-to-lip 的驱动,也就是主要是声音到嘴型的驱动,不同的模特都可以被驱动,能泛化于不同的模特之间(因为主要是驱动的嘴巴,其他部分还是保持视频原状即可)。但 GAN 训练容易坍塌,且生成的视频分辨率不高,看着比较模糊
  • 3D:如 NeRF,能够生成看起来质量较高的视频,但很难泛化,一般一个模型只能支持一个模特的渲染,泛化性较差

因此,作者选择了更好训练的扩散模型,将 audio-driven talking head 的合成看做一个 audio-driven 的连续时序的去噪过程

如图 1 所示,输入一个语音序列,DiffTalk 可以根据一个人物的一段视频来生成这个人物的新的说话视频

在这里插入图片描述

二、方法

DiffTalk 的整体结构如图 2 所示

在这里插入图片描述

2.1 针对 Talking head 的条件扩散模型

现在潜在扩散模型 LDM 应用很广泛,所以这里作者使用的也是 LDM

作者使用了一对儿训练好的 image encoder E I E_I EI 和 decoder D I D_I DI,在后续训练的时候固定权重不做训练

基于此,输入的人脸图片就会被编码到隐空间 z 0 = E I ( x ) ∈ R h × w × 3 z_0=E_I(x) \in R ^{h \times w \times 3} z0=EI(x)Rh×w×3,h 和 w 是原图大小 H 和 W 经过压缩后的大小,压缩倍数是下采样参数

一般的 LDM 都是一个时间序列的 UNet 去噪网络 M M M,学习的是反向去噪过程:

在这里插入图片描述

但在本文中,给定一个人物的 source identity 和 driven audio,本文的目标是训练一个模型能够生成和语音匹配的说话头视频,且要保留原始 identity 信息

所以,语音信号是一个基础条件来控制如何去噪

2.2 Identity-Preserving Model Generalization

在学习音频到唇部翻译的同时,另一个重要任务是在保留源图像中完整身份信息的同时实现模型的泛化。泛化的身份信息包括面部外观、头部姿态和图像背景。

为此,作者设计了一个参考机制,使模型能够泛化到训练中未见过的新个体

如图 2 所示,选择一个随机的源身份面部图像 xr 作为参考,其中包含外观和背景信息。为了防止训练中的捷径,会限制选择的 xr 与目标图像相距 60 帧以上。然而,由于真实的面部图像与 xr 的姿态完全不同,模型预期在没有任何先验信息的情况下将 xr 的姿态转移到目标面部上。

因此,作者将掩蔽的真实图像 xm 作为另一个参考条件来提供目标头部姿态的指导。xm 的嘴部区域被完全掩盖,以确保网络看不到真实的唇部动作。这样,参考 xr 专注于提供嘴部外观信息,这也降低了训练的难度。

同时,还使用 MLP encoder E L E_L EL 对面部关键点(除过嘴部)进行了编码,也作为条件

所以整个输入条件就变成了:

在这里插入图片描述
整个优化目标就是:

在这里插入图片描述

三、效果

数据:

  • HDTF 数据集,包括 16 小时视频,分辨率为 720P 或 1080P 的,超过 300 个人物
  • 作者随机选择了 100 个视频,抽取了约 100 min 时长的视频作为训练
  • resize 输入数据到 256x256,隐空间编码大小为 64x64x3,如果要训练大分辨率模型,输入是 512x512,隐空间编码大小同样为 64x64x3

在这里插入图片描述

在这里插入图片描述

这篇关于【数字人】9、DiffTalk | 使用扩散模型基于 audio-driven+对应人物视频 合成说话头(CVPR2023)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597957

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se