【深度学习:Synthetic Training Data 】合成训练数据简介

2024-01-12 12:12

本文主要是介绍【深度学习:Synthetic Training Data 】合成训练数据简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

【深度学习:Synthetic Training Data 】合成训练数据简介

    • 什么是合成训练数据?
    • 创建合成数据的两种方法

尽管文明正在产生大量的数据(根据最近的研究,每天有 2.5 万亿字节的新数据),但计算机视觉和机器学习数据科学家在获取足够的数据来训练和制作计算机视觉模型时仍然面临许多挑战。

算法生成的模型需要对大量数据进行训练,但有时这些数据并不容易获得。

设计高风险生产模型的机器学习工程师在整理训练数据时面临困难,因为大多数模型在投入生产时必须处理大量边缘情况。

只有少数错误的人工智能模型仍然可能产生灾难性的结果。考虑一家寻求将其汽车上路的自动驾驶汽车公司。在这些汽车中运行的人工智能模型需要对每种边缘情况具有准确、快速和实时的预测能力,例如区分行人和行人的倒影,以便车辆可以采取规避行动或继续正常驾驶。

不幸的是,高质量的行人反射图像并不像行人照片那样容易获得。

在机器学习可能产生最重大潜在影响的某些领域,很难找到足够大的训练数据。

考虑一家医疗人工智能公司,试图建立一个诊断罕见疾病的模型。该模型可能需要在数十万张图像上进行训练才能准确执行,但对于这种边缘情况,可能只有几千张图像。其他医学成像数据可能被锁定在私人患者记录中,构建这些模型的数据科学团队可能无法访问这些记录。

即使使用大量开源数据集,您所需的图像或视频数据集也可能不可用。

在这个场景中你能做什么?

答案是生成合成数据、图像、视频和合成数据集。

在这里插入图片描述

开源合成脑图像

什么是合成训练数据?

简而言之,图像和视频等合成数据是人工制造的,而不是从真实世界的事件(如MRI扫描或卫星图像)中捕获的。

合成数据会显著增加这些难以找到的数据集的大小。因此,使用合成数据增强真实世界的数据集可能意味着可行的生产就绪型计算机视觉模型与由于没有足够的数据进行训练而不可行之间的差异。

请记住,任何一种以数据为中心的方法都取决于将正确数据导入模型的能力。以下是我们对为您的计算机视觉模型选择最佳数据的看法。

在无法查找数据的情况下,为机器学习模型创建和使用合成数据集是最有效的方法。

创建合成数据的两种方法

多年来,Unity和Unreal等游戏引擎使游戏工程师能够构建虚拟环境。这些 3D 物理模型与编写代码很好地集成在一起,因此在生成某些类型的合成数据时非常有用。

由于人类现在对物理世界的物理学和相互作用有了深刻的理解,因此数字工程师可以设计这些模型来复制光与不同材料和表面的相互作用。这意味着他们可以继续改变 3D 环境并生成更多包含各种情况和边缘情况的数据。

例如,如果机器学习工程师正在训练自动驾驶汽车模型,数据工程师可以模拟不同的照明场景来创建行人的反射。然后,机器学习工程师将有足够的数据来训练模型,以学习区分行人和实际行人的反射。同样,数据工程师还可以生成代表不同天气情况(晴天、多云、朦胧、下雪)的数据,以便 ML 工程师可以训练模型在各种天气条件下表现适当。

在这里插入图片描述

Unity游戏引擎的实际应用

不幸的是,游戏引擎在生成合成数据时有一定的局限性。有时,没有足够的信息或对工作原理的理解来创建数据科学团队所需的边缘案例的 3D 版本。例如,在医学成像方面,来自相机型号和软件、图像格式文件、肠道健康、患者饮食等的许多因素 ⏤ 使模拟数据具有挑战性。

在这些场景中,数据工程师可以使用真实世界的数据,通过深度学习综合生成更多数据,而不是构建 3D 表示。

机器学习使他们能够生成人工数据,而不是从科学家或游戏工程师编程的一组参数中生成人工数据,而是从在真实世界数据集上训练的神经网络中生成。

生成对抗网络 (GAN) 是一个相对较新的发展,它允许我们通过设置两个神经网络来创建合成数据。其中一个模型(生成模型)接受随机输入并生成数据,另一个模型(判别模型)的任务是确定它输入的数据是真实世界的示例还是生成器模型制作的示例。

随着GAN的迭代,这两个“对立的模型”将相互训练和学习。如果生成器未能完成创建可信/逼真的合成数据的任务,它会调整其参数,而鉴别器保持不变。如果鉴别器未能完成将合成数据识别为“假”数据的任务,则会在生成器保持原样的情况下调整其参数。

在这里插入图片描述
在多次迭代中,这种相互作用将提高判别模型区分真实数据和合成数据的准确性。同时,生成模型在每次未能“愚弄”鉴别器时都会纳入反馈,从而随着时间的推移提高其创建准确合成数据的有效性。当这个训练完成时,GAN将创建高质量的合成数据,这些数据可以补充训练数据集,否则这些数据集将缺乏足够的真实世界数据来训练模型。

当然,使用合成数据有利有弊。在我的下一篇文章中,我将讨论使用 GAN 生成的合成数据的一些好处,以及这种方法带来的一些挑战。

这篇关于【深度学习:Synthetic Training Data 】合成训练数据简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597835

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语