imgaug库指南(18):从入门到精通的【图像增强】之旅

2024-01-12 08:12

本文主要是介绍imgaug库指南(18):从入门到精通的【图像增强】之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(十):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性噪声(AddElementwise方法)
imgaug库指南(11):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性高斯噪声(AdditiveGaussianNoise方法)
imgaug库指南(12):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)
imgaug库指南(13):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性泊松噪声(AdditivePoissonNoise方法)
imgaug库指南(14):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(Multiply方法)
imgaug库指南(15):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(MultiplyElementwise方法)
imgaug库指南(16):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Cutout方法
imgaug库指南(17):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout方法

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— CoarseDropout方法


CoarseDropout方法

功能介绍

iaa.CoarseDropoutimgaug库中一个数据增强方法,可用于神经网络的训练。它通过粗略地随机丢弃图像区域,模拟了经典的【Dropout】技术,有力地缓解了模型的过拟合问题。此方法通过将图像的特定区域巧妙地设为黑色,促使模型在训练过程中更加注重图像的其他关键部分,从而提升模型的泛化能力。

语法


import imgaug.augmenters as iaa
# 将2%到10%的像素用原图大小2%到5%的黑色方块覆盖
aug = iaa.CoarseDropout(p=(0.02, 0.1), size_percent=(0.02, 0.05))
  • p: 定义为图像中有多少比例的像素被黑色方块覆盖。

    • p为浮点数,则图像中被黑色方块覆盖的区域占整个图像的比例为p
    • p为元组(a, b),则图像中被黑色方块覆盖的区域占整个图像的比例为从区间[a, b]中采样的随机数;
    • p为列表,则图像中被黑色方块覆盖的区域占整个图像的比例为从列表中随机采样的数;
  • size_percent: 定义每个黑色方块的大小。

    • size_percent为浮点数0.02,则每个黑色方块大小为(1/size_percent, 1/size_percent), 即(50, 50);
    • size_percent为元组(a, b),则每个黑色方块大小为(1/size, 1/size), size为从区间[a, b]中采样的随机数;
    • size_percent为列表,则每个黑色方块大小为(1/size, 1/size), size为从列表中随机采样的数;

示例代码

  1. 使用不同的p
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建数据增强器
# 将20%的像素用大小为(50, 50)的黑色方块覆盖(1/0.02=50)
aug1 = iaa.CoarseDropout(p=0.2, size_percent=0.02)
# 将40%的像素用大小为(50, 50)的黑色方块覆盖(1/0.02=50)
aug2 = iaa.CoarseDropout(p=0.4, size_percent=0.02)
# 将60%的像素用大小为(50, 50)的黑色方块覆盖(1/0.02=50)
aug3 = iaa.CoarseDropout(p=0.6, size_percent=0.02)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化

可以从图1看到:

  • p越大时, 数据增强后的新图像会出现更多个大小为(50, 50)的黑色方块。
  1. 使用不同的 size_percent
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建数据增强器
# 将20%的像素用大小为(50, 50)的黑色方块覆盖(1/0.02=50)
aug1 = iaa.CoarseDropout(p=0.2, size_percent=0.02)
# 将20%的像素用大小为(25, 25)的黑色方块覆盖(1/0.04=25)
aug2 = iaa.CoarseDropout(p=0.2, size_percent=0.04)
# 将20%的像素用大小为(10, 10)的黑色方块覆盖(1/0.1=10)
aug3 = iaa.CoarseDropout(p=0.2, size_percent=0.1)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化

可以从图2看到:

  • size_percent=0.02时,黑色方块大小为(50, 50)。
  • size_percent=0.04时,黑色方块大小为(25, 25)。
  • size_percent=0.1时,黑色方块大小为(10, 10)。

注意事项

  1. 丢弃概率和区域大小psize_percent参数共同决定了黑色方块(丢弃区域)的数量和大小。较大的p可能导致更多的区域被丢弃。这些参数需要根据你的应用进行适当调整。
  2. 与其他增强器的结合使用:可以与其他图像增强方法结合使用,以获得更丰富的效果。例如,可以先应用模糊,然后再应用粗略丢弃。
  3. 结果的可重复性:每次应用增强器可能会产生稍微不同的结果,因为它是随机的操作。为了确保结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。

总结

iaa.CoarseDropout作为一项图像增强技术,凭借其独特功能,为模型泛化能力的提升开辟了新途径。在神经网络训练过程中,它发挥关键作用,有效避免模型对训练数据中的噪声或特定模式的过度依赖。为了实现最佳效果,用户需审慎调整相关参数,如丢弃概率和区域大小。与其他图像增强方法协同运用,其效用更显卓越。请注意,由于此方法涉及随机过程,每次应用可能产生不同的结果。因此,在测试和评估模型时,务必确保使用一致的增强流程,以维持结果的稳定性。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

这篇关于imgaug库指南(18):从入门到精通的【图像增强】之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597280

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编