【算法每日一练]-动态规划 (保姆级教程 篇16) #纸带 #围栏木桩 #四柱河内塔

本文主要是介绍【算法每日一练]-动态规划 (保姆级教程 篇16) #纸带 #围栏木桩 #四柱河内塔,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

今日知识点:

计算最长子序列的方案个数,类似最短路径个数问题

四柱河内塔问题:dp[i]=min{ (p[i-k]+f[k])+dp[i-k] } 

纸带

围栏木桩

 四柱河内塔


        

        
纸带

思路:

我们先设置dp[i]表示从i到n的方案数。

那么减法操作中:i可以移动到[1,i-1]中的任意一个格子。反过来可以认为:i可以从i+1到n转移过来。所以得出dp[i]=dp[i+1]+…dp[n];(使用后缀和即可)

然后除法操作中:i可以移动到[1,i/2]中的任意一个格子。反过来可以认为:i可以从x/2==i的任意x移动过来。所以得出dp[i]+=sum[i*j]-sum[i*j+j](i*j<=n)

#include <bits/stdc++.h>
using namespace std;
const int N=4e6+5;
int n,mod,dp[N],sum[N];int main(){cin>>n>>mod;dp[n]=sum[n]=1;for(int i=n-1;i>=1;i--){dp[i]=sum[i+1];//减法for(int j=2;j*i<=n;j++){//除法int r=min(n,i*j+j-1);dp[i]=(dp[i]+sum[i*j]-sum[r+1])%mod;}sum[i]=(sum[i+1]+dp[i])%mod;}	cout<<dp[1];
}

        

         

围栏木桩

 输入:
3
9 10 1 9 8 7 6 3 4 6
3 100 70 102
6 40 37 23 89 91 12

思路:

其实就是先找最长上升子序列,然后再求有多少个最长的上升子序列。

首先设置dp[i]表示以i结尾的最长上升子序列。

转移:(i能拼在j后面的话)dp[i]=max(dp[j])+1;

那么要求有多少个最长上升子序列的话就要进行修改,

把dp[i]=max(dp[j])+1改成 if(dp[j]+1>dp[i]) dp[i]=dp[j]+1;

这样的话就能知道什么时候修改了dp[i],当修改dp[i]的时候自然是因为i可以拼在j之后且拼完后dp[i]会变大。

故:f[i]=f[j]

当dp[j]+1=dp[i]时候,说明i即便拼在j后面dp也不会变化,那就说明拼在这个j后面也是最优解。

故:f[i]+=f[j]

类似最短路径个数问题嘛!

#include <bits/stdc++.h>
using namespace std;
const int N=27;
int n,m,h[N],dp[N],f[N],ans1,ans2;int main(){cin>>m;while(m--){cin>>n;ans1=0;ans2=0;for(int i=1;i<=n;i++){cin>>h[i];dp[i]=f[i]=1;}for(int i=2;i<=n;i++)for(int j=i-1;j;j--){if(h[j]<=h[i]){if(dp[j]+1>dp[i]){//更新最优解就继承dp[i]=dp[j]+1;f[i]=f[j];}else if(dp[j]+1==dp[i])//当前的j也是可以使变成最优解的jf[i]+=f[j];}}for(int i=1;i<=n;i++)ans1=max(ans1,dp[i]);for(int i=1;i<=n;i++)if(dp[i]==ans1)ans2+=f[i];cout<<ans1<<" "<<ans2<<'\n';}	
}

        

         

 四柱河内塔

思路:

这道题听过的很简单,没见过的确实很难做了。

首先我们从最简单的3柱开始:就如下图,对于n柱的河内塔把第一柱上面n-1个放到中间的柱子上,然后剩下的一个放到最右边,然后就转化成了把n-1个盘子的三柱河内塔问题。

设置dp[i]表示i个盘子的三柱河内塔问题。

那么对应转移方程:dp[i]=(dp[i-1]+1)+dp[i-1]=2*dp[i-1]+1

那么现在来考虑四柱河内塔情况:

对于n个盘子的四柱河内塔,我们先将上面的n-k个放到任意一柱上,然后剩余的k个放到最右边柱子。最后也转化成了n-k个盘子的四柱河内塔问题。

要注意的一点是:在转移k个盘子的情况属于3柱的河内塔问题,因为有一柱是不能使用的。

转移方程:dp[i]=(p[i-k]+f[k])+dp[i-k]  其中f[k]是三柱k个盘子的河内塔问题。dp[i-k]是四柱n-k个盘子的河内塔问题。但是我们并不确定到底是让k取多少,但是我们确定的是k的选值必须使得dp[i]最小。那么就有dp[i]=min{ (p[i-k]+f[k])+dp[i-k] } 

         

下面是代码部分 

#include <bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int f,dp[55];
int main(){cin>>f;memset(dp,INF,sizeof(dp));dp[0]=0;dp[1]=1;dp[2]=3;//初始化cout<<1<<'\n'<<3<<'\n';for(int i=3;i<=f;i++){for(int j=1;j<i;j++){if(dp[i]>2*dp[i-j]+pow(2,j)-1)//pow(2,j)-1就是f[j]的值dp[i]=2*dp[i-j]+pow(2,j)-1;}cout<<dp[i]<<'\n';}
}

这篇关于【算法每日一练]-动态规划 (保姆级教程 篇16) #纸带 #围栏木桩 #四柱河内塔的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/596925

相关文章

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.