频数表和列联表,以及进一步处理分析 -- R

2024-01-11 17:44

本文主要是介绍频数表和列联表,以及进一步处理分析 -- R,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的

数据框包含了一些分类变量,问?

1.如何统计分类变量的分布次数 -- 频数表
2.如何统计多分类变量的分布次数 -- 频联表
3.单个分类变量的分类结果是否满足理论分类结果  -- 拟合优度问题
4.多个分类变量的分类结果是否相关干扰  -- 分类变量(多因素)独立性检验

数据

library(vcd)data(Arthritis)
head(Arthritis)#  ID Treatment  Sex Age Improved
#1 57   Treated Male  27     Some
#2 46   Treated Male  29     None
#3 77   Treated Male  30     None
#4 17   Treated Male  32   Marked
#5 36   Treated Male  46   Marked
#6 23   Treated Male  58   Marked
# 频数表
table(Arthritis$Treatment)
# Placebo Treated 43      41 # 频联表
table(Arthritis$Treatment,Arthritis$Improved)
#          None Some Marked
#  Placebo   29    7      7
#  Treated   13    7     21

代码

  • 操作频数表
# 把频数表变成百分比占比
prop.table(table(Arthritis$Treatment))
# Placebo Treated 
#  0.5119  0.4881 
prop.table(table(Arthritis$Treatment)) *100
# Placebo Treated 
#  51.19   48.81# 把列联表变成百分比形式
prop.table(table(Arthritis$Treatment,Arthritis$Improved))
#              None     Some   Marked
# Placebo 0.345238 0.083333 0.08333
# Treated 0.154762 0.083333 0.250000# 按行求百分比
prop.table(table(Arthritis$Treatment,Arthritis$Improved),1)
# None    Some  Marked
# Placebo 0.67442 0.16279 0.16279
# Treated 0.31707 0.17073 0.51220
# 按列求百分比
prop.table(table(Arthritis$Treatment,Arthritis$Improved),2)
# None    Some  Marked
#  Placebo 0.69048 0.50000 0.25000
#  Treated 0.30952 0.50000 0.75000# 给列联表添加行列计数
addmargins(table(Arthritis$Treatment,Arthritis$Improved))
#       None Some Marked Sum
#  Placebo   29    7      7  43
# Treated   13    7     21  41
# Sum       42   14     28  84
addmargins(table(Arthritis$Treatment,Arthritis$Improved),1)
#          None Some Marked
#  Placebo   29    7      7
#  Treated   13    7     21
#  Sum       42   14     28
addmargins(table(Arthritis$Treatment,Arthritis$Improved),2)
#          None Some Marked Sum
#  Placebo   29    7      7  43
# Treated   13    7     21  41prop.table(addmargins(table(Arthritis$Treatment,Arthritis$Improved)))
#             None     Some   Marked      Sum
#  Placebo 0.086310 0.020833 0.020833 0.127976
#  Treated 0.038690 0.020833 0.062500 0.122024
#  Sum     0.125000 0.041667 0.083333 0.250000
# 单个分类变量的分类结果是否满足理论分类结果
table(Arthritis$Improved)
# None   Some Marked 
#   42     14     28 x <- Arthritis$Improved
# 模拟一个理论分布
y <- c(rep("None",30),rep("Some",30),rep("Marked",24))# 卡方检验
chisq.test(x,y)
# Pearson's Chi-squared test
# data:  x and y
# X-squared = 6.78, df = 4, p-value = 0.15
# 原假设 H0: 实际频次分布和理论频次分布不相似
# 因为 p >= 0.05,接受原假设,也就是数据中的频次分布和理论上的分布(y)不相似#模拟一个 和实际分布很相似的数据
y <- c(rep("None",39),rep("Some",16),rep("Marked",29))
chisq.test(x,y)# Pearson's Chi-squared test
# data:  x and y
# X-squared = 16.8, df = 4, p-value = 0.0021
# 此时p <= 0.05,需要拒绝原假设接受备择假设,也就是实际频次分布和理论频次分布相似
# 多个分类变量的分类结果是否相关干扰  -- 分类变量(多因素)独立性检验
table(Arthritis$Treatment,Arthritis$Improved)
# None Some Marked
#  Placebo   29    7      7
#  Treated   13    7     21
#问 treatment 方式对improved的频次分布有影响嘛?或者说两个分类变量独立吗?# 卡方检验,直接把频联表丢给chisq.test( )函数即可    <==== 参数检验
mytable <- table(Arthritis$Treatment,Arthritis$Improved)
chisq.test(mytable)# Pearson's Chi-squared test
# data:  mytable
# X-squared = 13.1, df = 2, p-value = 0.0015
# p <= 0.05 拒绝原假设:相互独立,也就是treatment 方式对improved的频次分布有影响# Fisher's精确检验(Fisher's exact test)         <=========非参数检验
fisher.test(mytable)# 	Fisher's Exact Test for Count Data
# data:  mytable
# p-value = 0.0014
# alternative hypothesis: two.sided
# p <= 0.05 拒绝原假设:相互独立,也就是treatment 方式对improved的频次分布有影响
# 上面看到两个分类变量是相互影响的
# 问:如何度量它们之间的相关性强度呢?
library(vcd)mytable <- table(Arthritis$Treatment,Arthritis$Improved)
assocstats(mytable)#                     X^2 df  P(> X^2)
# Likelihood Ratio 13.530  2 0.0011536
# Pearson          13.055  2 0.0014626# Phi-Coefficient   : NA 
# Contingency Coeff.: 0.367 
# Cramer's V        : 0.394 

vcdӉ中的assocstats()函数可以计算二维列联表的phi系数,列联系数,Cramer‘s V系数
总体来说,较大的数值意味着较强的相关性

这篇关于频数表和列联表,以及进一步处理分析 -- R的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/595191

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方