【得物技术】GOREPLAY流量录制回放实战

2024-01-11 10:18

本文主要是介绍【得物技术】GOREPLAY流量录制回放实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GoReplay 简介

随着应用程序的复杂度的增长,测试它所需要的工作量也呈指数级增长。 GoReplay 为我们提供了复用现有流量进行测试的简单想法。GoReplay是一个用golang开发的简单的流量录制插件,支持多种方式的过滤,限流放大,重写等等特性。GoReplay 可以做到对代码完全无侵入性,也不需要更改你的生产基础设施,并且与语言无关。它不是代理,而是直接监听网卡上的流量。

GoReplay 工作方式:listener server 捕获流量,并将其发送至 replay server 或者保存至文件,或者保存到kafka。然后replay server 会将流量转移至配置的地址

使用过程

需求:接到算法侧的需求,需要录制真实的生产环境流量,并且随时回放到任意环境。

由于算法侧部分场景为非Java语言编写,现存的流量录制平台暂时无法支持,需要采用新的录制组件来支撑压测需求,遂选择goreplay 。

GoReplay支持将录制的数据存储到本地文件中,然后回放时从文件中读取。考虑到每次录制回放时需要进行存储及下发文件的复杂度,我们期望使用更便捷的方式来管理数据。

GoReplay也是原生支持录制数据存储到kafka中的,但是在使用的时候,发现它有较大的限制;使用kafka存储数据时,必须是流量录制的同时进行流量回放,其架构图如下:

流程1-4 无法拆分,只能同时进行

这会显得流量录制回放功能很鸡肋,我们需要录制好的数据任意时刻重放,并且也要支持将一份录制好的数据多次重放。既然它已经将流量数据存储到了kafka,我们就可以考虑对GoReplay进行改造,以让他支持我们的需求。

改造后的流量录制回放架构图:

图中,1-2 与 3-5 阶段是相互独立的

也就是说,流量录制过程与回放过程可以拆开。只需要在录制开始与结束的时候记录kafka的offset,就可以知道这个录制任务包含了哪些数据,我们可以轻松的将每一段录制数据,整理成录制任务,然后在需要的时候进行流量回放。

改造与整合

kafka offset 支持改造

简要过程:

源码中的 InputKafkaConfig 的定义

type InputKafkaConfig struct {producer sarama.AsyncProducerconsumer sarama.ConsumerHost     string `json:"input-kafka-host"`Topic    string `json:"input-kafka-topic"`UseJSON  bool   `json:"input-kafka-json-format"`
}

修改后的 InputKafkaConfig 的定义

type InputKafkaConfig struct {producer  sarama.AsyncProducerconsumer  sarama.ConsumerHost      string `json:"input-kafka-host"`Topic     string `json:"input-kafka-topic"`UseJSON   bool   `json:"input-kafka-json-format"`StartOffset    int64  `json:"input-kafka-offset"`EndOffset int64  `json:"input-kafka-end-offset"`
}

源码中,从kafka读取数据的片段:
可以看到,它选取的offset 是 Newest

for index, partition := range partitions {consumer, err := con.ConsumePartition(config.Topic, partition, sarama.OffsetNewest)go func(consumer sarama.PartitionConsumer) {defer consumer.Close()for message := range consumer.Messages() {i.messages <- message}}(consumer)}

修改过后的从kafka读数据的片段:

for index, partition := range partitions {consumer, err := con.ConsumePartition(config.Topic, partition, config.StartOffset)offsetEnd := config.EndOffset - 1go func(consumer sarama.PartitionConsumer) {defer consumer.Close()for message := range consumer.Messages() {// 比较消息的offset, 当超过这一批数据的最大值的时候,关闭通道if offsetFlag && message.Offset > offsetEnd {i.quit <- struct{}{}break}i.messages <- message}}(consumer)}

此时,只要在启动回放任务时,指定kafka offset的范围。就可以达到我们想要的效果了。

整合到压测平台

通过页面简单的填写选择操作,然后生成启动命令,来替代冗长的命令编写

StringBuilder builder = new StringBuilder("nohup /opt/apps/gor/gor");
// 拼接参数 组合命令
builder.append(" --input-kafka-host ").append("'").append(kafkaServer).append("'");
builder.append(" --input-kafka-topic ").append("'").append(kafkaTopic).append("'");
builder.append(" --input-kafka-start-offset ").append(record.getStartOffset());
builder.append(" --input-kafka-end-offset ").append(record.getEndOffset());
builder.append(" --output-http ").append(replayDTO.getTargetAddress());
builder.append(" --exit-after ").append(replayDTO.getMonitorTimes()).append("s");
if (StringUtils.isNotBlank(replayDTO.getExtParam())) {builder.append(" ").append(replayDTO.getExtParam());
}
builder.append(" > /opt/apps/gor/replay.log 2>&1 &");
String completeParam = builder.toString();

压测平台通过 Java agent 暴露的接口来控制 GoReplay进程的启停

String sourceAddress = replayDTO.getSourceAddress();
String[] split = sourceAddress.split(COMMA);
for (String ip : split) {String uri = String.format(HttpTrafficRecordServiceImpl.BASE_URL + "/gor/start", ip, 	 											HttpTrafficRecordServiceImpl.AGENT_PORT);// 重新创建对象GoreplayRequest request = new GoreplayRequest();request.setConfig(replayDTO.getCompleteParam());request.setType(0);try {restTemplate.postForObject(uri, request, String.class);} catch (RestClientException e) {LogUtil.error("start gor fail,please check it!", e);MSException.throwException("start gor fail,please check it!", e);}
}

文/一码当先

关注得物技术,做最潮技术人!

这篇关于【得物技术】GOREPLAY流量录制回放实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594039

相关文章

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

Redis 命令详解与实战案例

《Redis命令详解与实战案例》本文详细介绍了Redis的基础知识、核心数据结构与命令、高级功能与命令、最佳实践与性能优化,以及实战应用场景,通过实战案例,展示了如何使用Redis构建高性能应用系统... 目录Redis 命令详解与实战案例一、Redis 基础介绍二、Redis 核心数据结构与命令1. 字符

在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南

《在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南》在SpringBoot和MyBatis项目中实现MySQL读写分离,主要有两种思路:一种是在应用层通过代码和配置手动控制... 目录如何选择实现方案核心实现:应用层手动分离实施中的关键问题与解决方案总结在Spring Boot和

Python AST 模块实战演示

《PythonAST模块实战演示》Python的ast模块提供了一种处理Python代码的强大工具,通过解析代码生成抽象语法树(AST),可以进行代码分析、修改和生成,接下来通过本文给大家介绍Py... 目录 什么是抽象语法树(AST)️ ast 模块的核心用法1. 解析代码生成 AST2. 查看 AST

python协程实现高并发的技术详解

《python协程实现高并发的技术详解》协程是实现高并发的一种非常高效的方式,特别适合处理大量I/O操作的场景,本文我们将简单介绍python协程实现高并发的相关方法,需要的小伙伴可以了解下... 目录核心概念与简单示例高并发实践:网络请求协程如何实现高并发:核心技术协作式多任务与事件循环非阻塞I/O与连接

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关