计算框架相关的编译器知识(XLA, nGraph)

2024-01-11 09:38

本文主要是介绍计算框架相关的编译器知识(XLA, nGraph),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tensorflow XLA的加速原理主要是融合Kernel

def  model_fn(x,y,z):    return tf.reduce_sum(x + y * z)  

如果运行模型时不使用 XLA,图表会启动三个内核,分别用于乘法、加法和减法。

官网原话:XLA 可以优化计算图,将加法、乘法和减法 “融合” 到单个 GPU Kernel中。此外,这种融合运算不会将 y*z 和 x+y*z 生成的中间值写入内存,而是将这些中间计算的结果直接 “流式传输” 给用户,并完整保存在 GPU 寄存器中。融合是 XLA 最重要的一种优化方式。内存带宽通常是硬件加速器上最稀缺的资源,因此删除内存运算是提升性能的最佳方法之一。

我的理解:计算融合到一个Kernel,减少Kernel启动次数,减少中间结果来回读写显存次数

Tensorflow使用XLA比不使用,在大部分模型下,能有10%~50%左右的加速提升;可以用户自己指定哪些操作做XLA编译优化,也可以让系统自动去找可优化的地方自动进行XLA优化;

AOT方式和JIT方式

两种方式下都会将整个计算图或则计算图的一部分直接编译成可执行代码。两则的区别也是比较明显的,除了编译时机不一样(AOT计算图在不会在运行阶段前被编译成可执行代码,JIT是在进入运行阶段后的适当的时机才会被编译成可执行代码),还有就是runtime(运行时)的参与程度。AOT中彻底不需要运行时的参与了,而JIT中还是需要运行时参与的,但是JIT会优化融合原计算图中的节点,加入XlaLaunch节点,来加速计算图的执行。

经典LLVM编译器架构:(扩展性支持好,即插即用的前端和后端)

Tensorflow的XLA架构(类似LLVM):

 

TVM

 

nGraph

原理上没有新东西提出来,只是提出了nGraph IR(Intermediate Representation),又一种DL IR。这些工作不外乎又是把问题变为了编译器的问题的又一种展现。

Tensorflow Model / ONNX / Caffe Model / ... ---> DL IR (nGraph IR / *.IR) ---> LLVM IR ---> CPU JIT / GPU / ...

如果把前面的Model看成一种语言或者DSL,就是DSL ---> DL IR ---> LLVM IR ---> Target ,然后你就在中间层疯狂的做优化,编译器优化开发也是这样做的。

在LLVM IR出现以前,很多编译器都有几层的IR表示,比如 C++ ----> 1st IR ----> OPT ----> 2nd IR ----> .... -> Target,只是LLVM出来以后,LLVM IR做了统一,编译器变为了 C++ ----> LLVM IR ---> OPT ----> LLVM IR ----> Target

在DL IR没有统一之前,我相信业界还会重复造轮子,然后来证明我的DL IR是最好的,你来用。就问题而言,这个问题已经变为了一个编译器问题。

 

这篇关于计算框架相关的编译器知识(XLA, nGraph)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593941

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase