pointpillars点云算法TensorRT环境加速系列三

2024-01-11 01:48

本文主要是介绍pointpillars点云算法TensorRT环境加速系列三,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简述

  在之前的两篇博客基础上,继续写下通过TensorRT加速onnx模型的速度与精度提升了多少,主要是通过github上开源的代码onnx_tensorrt来优化加载onnx进行加速。onnx_tensorrt环境配置有点麻烦,需要相对应的onnx与tensorrt与onnx_tensorrt的版本。我的版本为:onnx = 1.4.0 + tensorrt = 5.1.5.0 + onnx_tensorrt = 5.1 。 NVIDIA官方issues里面有许多关于tensorrt版本的问题,不过建议按照对应的成功版本,按照onnx_tensorrt的步骤进行安装onnx_tensorrt库。当然,文末有我提交docker版本的onnx_tensorrt镜像。另外:我的之前两篇pointpillars点云算法链接如下:

pointpillars点云算法TensorRT环境加速系列一

pointpillars点云算法TensorRT环境加速系列二

  同时,我的主要代码会提交到github上面:点击传送门。如果觉得有用,还请star一下哈。

Compare pfe.onnx ONNX with TensorRT

  首先我们来进行pfe.onnx模型验证,通过两种方式进行加载:1、直接通过onnx方式进行加载预测;2、通过onnx_tensorrt进行加载来优化加速;注:因为之前博客已经对比过onnx加载输出与原始的pytorch模型对比过精度,损失系数在小数点后三位。那么,我们现在直接用onnx_tensorrt加速对比onnx方式即可。

  onnx方式直接加载,请参考我的上一篇博客,下面我们来看下通过onnx_tensorrt加速优化的主要部分代码:

def tensorrt_backend_pfe_onnx():pillar_x = np.ones([1, 1, 12000, 100], dtype=np.float32)pillar_y = np.ones([1, 1, 12000, 100], dtype=np.float32)pillar_z = np.ones([1, 1, 12000, 100], dtype=np.float32)pillar_i = np.ones([1, 1, 12000, 100], dtype=np.float32)num_points_per_pillar = np.ones([1, 12000], dtype=np.float32)x_sub_shaped = np.ones([1, 1, 12000, 100], dtype=np.float32)y_sub_shaped = np.ones([1, 1, 12000, 100], dtype=np.float32)mask = np.ones([1, 1, 12000, 100], dtype=np.float32)pfe_inputs = [pillar_x, pillar_y, pillar_z, pillar_i, num_points_per_pillar,x_sub_shaped, y_sub_shaped, mask]print("pfe_inputs length is : ", len(pfe_inputs))start = time.time()pfe_model = onnx.load("pfe.onnx")engine = backend.prepare(pfe_model, device="CUDA:0", max_batch_size=1)for i in range(1, 1000):pfe_outputs = engine.run(pfe_inputs)end = time.time()print('inference time is : ', (end - start)/1000)print(pfe_outputs)

  Now,看完主要的tensorrt的测试代码,看一下通过onnx_tensorrt优化后的输出与onnx直接加载方式的输出对比吧。

Compare rpn.onnx ONNX with TensorRT

  Ok,我们接下来需要对rpn.onnx来对比tensorrt的加速精度。由于中间涉及pillarscatter网络,我们目前就单独测试rpn.onnx的输出精度与onnx加载rpn.onnx的输出精度。

  rpn.onnx(onnx直接加载的方式同理参考上一篇博客即可)经过tensorrt优化的加速代码如下:

def tensorrt_backend_rpn_onnx():rpn_input_features = np.ones([1, 64, 496, 432], dtype=np.float32)rpn_start_time = time.time()rpn_model = onnx.load("rpn.onnx")engine = backend.prepare(rpn_model, device="CUDA:0", max_batch_size=1)for i in range(1, 1000):rpn_outputs = engine.run(rpn_input_features)rpn_end_time = time.time()print('rpn inference time is : ', (rpn_end_time - rpn_start_time)/1000)print(rpn_outputs)

  我们来对比一下rpn.onnx模型经过onnx直接加载方式与tensorrt优化的对比输出结果:(注:此处的rpn输出与上一篇博客数据不同,主要原因在于这里rpn输入是设置np.ones矩阵,上一篇是直接接PillarScatter网络的输出作为输入。)

ONNX与TensorRT的时间对比如下
Time/spre-processpfe.onnxpillarscatterrpn.onnxpost-processall
onnxN/A0.26035N/A0.198846N/AN/A
tensorrtN/A0.01116N/A0.0187535N/AN/A

  上面表格中可以看出pfe.onnx与rpn.onnx的计算性能提升对比,N/A代表还未进行测试。目前只是单独测试了一下,并没有进行系统测试,数据仅供参考。

onnx_tensorrt的docker镜像源:

docker pull smallmunich/onnx_tensorrt:latest
小结

  由于pfe.onnx与rpn.onnx中间嵌入了一个pillarscatter网络,所以系统测试的话需要对其进行改写,后期可能会将这部分的torch代码修改为纯python版本来进行全程测试吧。目前单独测试pfe.onnx与rpn.onnx精度损失较少,速度优化很大提升。后面,可能系统测试一下整体的速度优化比例,用python代码实现pillarscatter部分网络,具体请等待我的github更新。

参考文献

https://arxiv.org/abs/1812.05784

https://github.com/SmallMunich/nutonomy_pointpillars

https://blog.csdn.net/Small_Munich/article/details/101559424

https://blog.csdn.net/Small_Munich/article/details/102073540

这篇关于pointpillars点云算法TensorRT环境加速系列三的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592753

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Java 与 LibreOffice 集成开发指南(环境搭建及代码示例)

《Java与LibreOffice集成开发指南(环境搭建及代码示例)》本文介绍Java与LibreOffice的集成方法,涵盖环境配置、API调用、文档转换、UNO桥接及REST接口等技术,提供... 目录1. 引言2. 环境搭建2.1 安装 LibreOffice2.2 配置 Java 开发环境2.3 配

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤