大模型LLM在 Text2SQL 上的应用实践

2024-01-11 01:04

本文主要是介绍大模型LLM在 Text2SQL 上的应用实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

目前,大模型的一个热门应用方向Text2SQL,它可以帮助用户快速生成想要查询的SQL语句,再结合可视化技术可以降低使用数据的门槛,更便捷的支持决策。本文将从以下四个方面介绍LLM在Text2SQL应用上的基础实践。

· Text2SQL概述

· LangChain基础知识

· 基于SQLDatabaseChain的Text2SQL实践

· 后续计划

二、Text2SQL概述

Text-to-SQL(或者Text2SQL),顾名思义就是把文本转化为SQL语言,更学术一点的定义是:把数据库领域下的自然语言(Natural Language,NL)问题,转化为在关系型数据库中可以执行的结构化查询语言(Structured Query Language,SQL),因此Text-to-SQL也可以被简写为NL2SQL。

在这里插入图片描述

· 输入:自然语言问题,比如“查询表t_user的相关信息,结果按id降序排序,只保留前10个数据

· 输出:SQL,比如 “SELECT * FROM t_user ORDER BY id DESC LIMIT 10

Text2SQL应用主要是帮助用户减少开发时间,降低开发成本。“打破人与结构化数据之间的壁垒”,即普通用户可以通过自然语言描述完成复杂数据库的查询工作,得到想要的结果。

在这里插入图片描述

基于LLM的应用开发基本架构如上图,本文介绍以LangChain + OpenAI + RDB的方式来实现Text2SQL的实践方案。

三、LangChain基础知识

LangChain是一个面向大语言模型的应用开发框架,如果将大语言模型比作人的大脑,那么可以将LangChain可以比作人的五官和四肢,它可以将外部数据源、工具和大语言模型连接在一起,既可以补充大语言模型的输入,也可以承接大语言模型的输出。

LangChain提供各种不同的组件帮助使用LLM,如下图所示,核心组件有Models、Indexes、Chains、Memory、Prompt以及Agent。

在这里插入图片描述

3.1 Models

LangChain本身不提供LLM,提供通用的接口访问LLM,可以很方便的更换底层的LLM以及自定义自己的LLM。主要有2大类的Models:

1)LLM:将文本字符串作为输入并返回文本字符串的模型,类似OpenAI的text-davinci-003

2)Chat Models:由语言模型支持将聊天消息列表作为输入并返回聊天消息的模型。一般使用的ChatGPT以及Claude为Chat Models。

与模型交互可以通过给予Prompt的方式,LangChain通过PromptTemplate的方式方便我们构建以及复用Prompt。

代码示例如下:

from langchain import PromptTemplate# 定义提示模板
prompt = PromptTemplate(input_variables=["question"], template="""简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 
问题是:{question}""",)print(prompt.format_prompt(question="如何进行数据治理"))

3.2 Indexes

索引和外部数据进行集成,用于从外部数据获取答案。如下图所示,主要的步骤:

· 通过Document Loaders加载各种不同类型的数据源

· 通过Text Splitters进行文本语义分割

· 通过Vectorstore进行非结构化数据的向量存储

· 通过Retriever进行文档数据检索

在这里插入图片描述

3.3 Chains

LangChain通过chain将各个组件进行链接,以及chain之间进行链接,用于简化复杂应用程序的实现。其中主要有LLMChain、SQLDatabase Chain以及Sequential Chain。

3.3.1 LLMChain

最基本的链为LLMChain,由PromptTemplate、LLM和OutputParser组成。LLM的输出一般为文本,OutputParser用于让LLM结构化输出并进行结果解析,方便后续的调用。

在这里插入图片描述

其实现原理如图所示,包含三步:

· 输入问题

· 拼接提示,根据提示模板将问题转化为提示

· 模型推理,输出答案

代码如下所示:

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain import OpenAI
import osos.environ["OPENAI_API_KEY"] = "Your openai key"
# 定义模型
llm = OpenAI(temperature=0)# 定义提示模板
prompt = PromptTemplate(input_variables=["question"], template="""简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。问题是:{question}""",)
# 定义chain
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
# 执行chain
print(chain.run("如何开展数据治理"))

3.3.2 SQLDatabaseChain

SQLDatabaseChain能够通过模型自动生成SQL并执行,其实现原理如图所示,包含如下过程:

图片

· 输入问题;

· 获取数据库Schema,Schema包含数据库所有表的建表语句和数据示例,LangChain支持多种关系型数据库,包括MariaDB、MySQL、SQLite、ClickHouse、PrestoDB等;

· 拼接提示,根据提示模板将问题、数据库Schema转化为提示,并且提示中包含指示,要求模型在理解问题和数据库Schema的基础上,能够按一定的格式输出查询SQL、查询结果和问题答案等;

· 模型推理,这一步预期模型根据问题、数据库Schema推理、输出的答案中包含查询SQL,并从中提取出查询SQL;

· 执行查询SQL,从数据库中获取查询结果;

· 拼接提示,和上一次拼接的提示基本一致,只是其中的提示中包含了前两步已获取的查询SQL、查询结果;

· 模型推理,这一步预期模型根据问题、数据库Schema、查询SQL和查询结果推理出最终的问题答案。

3.3.3 SequentialChain

SequentialChains是按预定义顺序执行的链。SimpleSequentialChain为顺序链的最简单形式,其中每个步骤都有一个单一的输入/输出,一个步骤的输出是下一个步骤的输入。SequentialChain为顺序链更通用的形式,允许多个输入/输出。

3.4 Memory

正常情况下Chain无状态的,每次交互都是独立的,无法知道之前历史交互的信息。LangChain使用Memory组件保存和管理历史消息,这样可以跨多轮进行对话,在当前会话中保留历史会话的上下文。Memory组件支持多种存储介质,可以与Mongo、Redis、SQLite等进行集成,以及简单直接形式就是Buffer Memory。

3.5 Agent

Agent字面含义就是代理,如果说LLM是大脑,Agent就是代理大脑使用工具Tools。目前的大模型一般都存在知识过时、逻辑计算能力低等问题,通过Agent访问工具,可以去解决这些问题。目前这个领域特别活跃,诞生了类似AutoGPT、BabyAGI、AgentGPT等一堆优秀的项目。传统使用LLM,需要给定Prompt一步一步地达成目标,通过Agent是给定目标,其会自动规划并达到目标。

四、基于SQLDatabaseChain的Text2SQL实践

4.1 简介

LangChain提供基于LLM的SQLDatabaseChain,可以利用LLM的能力将自然语言的query转化为SQL,连接DB进行查询,并利用LLM来组装润色结果,返回最终answer。

在后台,LangChain 使用SQLAlchemy连接到 SQL 数据库。因此,SQLDatabaseChain可以与 SQLAlchemy 支持的任何 SQL 方言一起使用,例如 MS SQL、MySQL、MariaDB、PostgreSQL、Oracle和 SQLite。

4**.**2 数据准备

本案例使用SQLite 和示例Chinook 数据库,用户可按照https://database.guide/2-sample-databases-sqlite/ 上的说明进行设置。Chinook表示一个数字多媒体商店,包含了顾客(Customer)、雇员(Employee)、歌曲(Track)、订单(Invoice)及其相关的表和数据,数据模型如下图所示。

图片

4.3实践过程

需求: 测试中文提问“总共有多少员工?”,即英文提问“How many employees are there?”

期望: 模型先给出查询Employee表记录数的SQL,再根据查询结果给出最终的答案。

(1)测试中文提问,代码如下所示:

from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
import osos.environ["OPENAI_API_KEY"] = "Your openai key"db = SQLDatabase.from_uri("sqlite:///..../Chinook.db")
llm = OpenAI(temperature=0, verbose=True)
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
db_chain.run("总共有多少员工?")

输出结果如下:

在这里插入图片描述

这里我们使用商业化的OpenAI,并将其temperature设为0,因为查询DB不太需要创造性和多样性。从返回的过程来看,自然语言被翻译成了SQL,得到查询结果后,解析包装结果,最终返回我们可以理解的答案。这里LLM成功将“总共”转成select count(*),并准确地识别出表名,且最终组装出正确的结果。

注意: 对于数据敏感项目,可以在 SQLDatabaseChain 初始化中指定 return_direct=True,以直接返回 SQL 查询的输出,而无需任何其他格式设置。这样可以防止 LLM 看到数据库中的任何内容。但请注意,默认情况下,LLM 仍然可以访问数据库方案(即所用方言、表名和列名)

(2)测试英文提问,也可以得到我们想要的结果:

在这里插入图片描述

通过上例,我们可以借助LangChain提供的SQLDatabaseChain,轻松地连接LLM与Database,自然语言的方式输入,自然语言的方式输出,借助LLM的强大能力来理解问题、生成SQL查询数据并输出结果。

五、后续计划

随着大模型的发展,LangChain是目前最火的LLM开发框架之一,能和外部数据源交互、能集成各种常用的组件等等,大大降低了LLM应用开发的门槛。基于SQLDatabaseChain实现的Text2SQL只是最基础的实践方式,但对于逻辑复杂的查询在稳定性、可靠性、安全性方面可能无法达到预期,比如输出幻觉问题、数据安全问题。如何解决或减少该类问题的出现,可改进的措施和方案在后续专题中继续讨论,大家一起群策群力。总之,实现高稳定、高可靠的基于LLM的应用,是一个持续改进的过程,是一个多种技术相结合的过程。

参考文献:

https://docs.langchain.com/docs/

https://platform.openai.com/

https://database.guide/2-sample-databases-sqlite/

https://www.langchain.asia/modules/chains/examples/sqlite

https://mp.weixin.qq.com/s/pgRC71IkSXrOjZg3W9V72g

https://zhuanlan.zhihu.com/p/640580808

这篇关于大模型LLM在 Text2SQL 上的应用实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592651

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定