HashMap多线程扩容导致死循环解析(JDK1.7)

2024-01-11 00:10

本文主要是介绍HashMap多线程扩容导致死循环解析(JDK1.7),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

前一篇 HashMap底层结构与实现原理 遗留了一个问题:JDK1.7中的HashMap在多线程情况下扩容可能会导致死循环。本篇就这个问题进行讲解。

扩容死循环

前一篇深入的讲解了HashMap1.7扩容的过程,这里回顾一下在扩容过程中,单链表的表现,相关的代码如下

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;// 外层循环遍历数组槽(slot)for (Entry<K,V> e : table) {// 内层循环遍历单链表while(null != e) {// 记录当前节点的next节点Entry<K,V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}// 找到元素在新数组中的槽(slot)int i = indexFor(e.hash, newCapacity);// 用头插法将元素插入新的数组e.next = newTable[i];newTable[i] = e;// 遍历下一个节点e = next;}}
}

单线程情况下,假设A、B、C三个节点处在一个链表上,扩容后依然处在一个链表上,代码执行过程如下:
JDK1.7-HashMap扩容时链表转移过程
需要注意的几点是

  • 单链表在转移的过程中会被反转
  • table是线程共享的,而newTable是不共享的
  • 执行table = newTable后,其他线程就可以看到转移线程转移后的结果了

理解了单线程下链表在扩容时的行为,再来看多线程的情况就比较容易了

此处感谢评论区@伤神v同学的指点,以下多线程扩容图是修正后的图

还是关注transfer方法这段代码

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;for (Entry<K,V> e : table) {while(null != e) {Entry<K,V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}int i = indexFor(e.hash, newCapacity);e.next = newTable[i];newTable[i] = e;  // *线程1在这行暂停(尚未执行)e = next;}}
}

HashMap扩容死循环

  • 线程1执行newTable[i] = e时暂停(未执行)
  • 线程2直接扩容完成
  • 线程1继续执行,此时线程1可以看到线程2扩容后的结果

图中已经画出了每一行代码执行后,HashMap的结构图,仔细观察图中的结构变化,就能理解为什么会死循环。

由此,完完整整的解释了为什么多线程情况下,JDK1.7版本的HashMap扩容有可能出现死循环。

JDK1.8改进

JDK1.8中扩容的方法是resize,对应的代码是(HashMap中第715行至第742行):

// 低位链表头节点,尾结点
// 低位链表就是扩容前后,所处的槽(slot)的下标不变
// 如果扩容前处于table[n],扩容后还是处于table[n]
Node<K,V> loHead = null, loTail = null;
// 高位链表头节点,尾结点
// 高位链表就是扩容后所处槽(slot)的下标 = 原来的下标 + 新容量的一半
// 如果扩容前处于table[n],扩容后处于table[n + newCapacity / 2]
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}
} while ((e = next) != null);
if (loTail != null) {loTail.next = null;// 低位链表在扩容后,所处槽的下标不变newTab[j] = loHead;
}
if (hiTail != null) {hiTail.next = null;// 高位链表在扩容后,所处槽的下标 = 原来的下标 + 扩容前的容量(也就是扩容后容量的一半)newTab[j + oldCap] = hiHead;
}

注意第12行的代码(e.hash & oldCap) == 0就可以判断,当前槽上的链表在扩容前和扩容后,所在的槽(slot)下标是否一致。举个例子:
假如一个key的hash值为1001 1100,转换成十进制就是156,数组长度为1000,转换成十进制就是8。

  1001 1100
& 0000 1000
--------------0000 1000

也就是(e.hash & oldCap) != 0,很容易计算出,扩容前这个key的下标是4(156 % 8 = 4),扩容后下标是12(156 % 16 = 12)即:12 = 4 + 16 / 2,满足n = n + newCapacity / 2,由此可以看出这种计算方式非常巧妙。至于第12行之后的代码就是基本的单链表操作了,只是一个单链表同时具有头指针尾指针,等到链表被分成高位链表和低位链表后,再一次性转移到新的table。这样就完成了单链表在扩容过程中的转移,使用两条链表的好处就是转移前后的链表不会倒置,更不会因为多线程扩容而导致死循环。

总结

本篇主要通过图解的方式,解释了为什么JDK1.7中的HashMap在多线程情况下扩容可能死循环,也解释了JDK1.8如何解决这个问题。不得不说,画图是个很好的分析方式,根据代码,一步一步把结构图画出来,比对着代码瞎琢磨效果好多了。

以上就是本篇文章的全部内容。

这篇关于HashMap多线程扩容导致死循环解析(JDK1.7)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592534

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧