Spark学习笔记(详解,附代码实列和图解)----------RDD(三)持久化

2024-01-10 20:48

本文主要是介绍Spark学习笔记(详解,附代码实列和图解)----------RDD(三)持久化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六. RDD 持久化

当需要对RDD连续使用时,重复调用是否就可以避免从头再来呢?
在这里插入图片描述

val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{println("@@@@@@@@@@@@")(word,1)})val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/****************")val groupRDD = mapRDD.groupByKey()groupRDD.collect().foreach(println)

输出:
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,1)
(Hello,2)
(Scala,1)
/****************
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,CompactBuffer(1))
(Hello,CompactBuffer(1, 1))
(Scala,CompactBuffer(1))

由输出可见,mapRDD从开始又执行了一次,所以效率很低,那能否有什么办法让rdd暂时保存数据呢?

  • 答案是使用持久化

在这里插入图片描述

1.RDD持久化原理

Spark中非常重要的一个功能特性就是可以将RDD持久化在内存中,当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition。这样的话,对于针对一个RDD反复执行多个操作的场景,就只要针对RDD计算一次即可,后面直接使用该RDD,而不用反复计算该RDD。

2.RDD持久化的使用场景

(1).第一次加载大量的数据到RDD中
(2).频繁的动态更新RDD Cache数据,不适合使用Spark Cache、Spark lineage

3.RDD持久化方法

1) RDD Cache 缓存 和 persist

RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该 RDD 将会被缓存在计算节点的内存中,并供后面重用。

val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{println("@@@@@@@@@@@@")(word,1)})mapRDD.cache()// 持久化操作必须在行动算子执行时完成的。//mapRDD.persist(StorageLevel.DISK_ONLY)val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/****************")val groupRDD = mapRDD.groupByKey()groupRDD.collect().foreach(println)

输出:
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,1)
(Hello,2)
(Scala,1)
/****************
(Spark,CompactBuffer(1))
(Hello,CompactBuffer(1, 1))
(Scala,CompactBuffer(1))

使用persist方法 可以更改存储级别

mapRdd.persist(StorageLevel.MEMORY_AND_DISK_2)

在这里插入图片描述

  • cache()和persist()的区别在于,cahe()是persist()的一种简化方式,cache()的底层就是调用的persist()的无参版本,即persist(MEMORY_ONLY)

缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于 RDD 的一系列转换,丢失的数据会被重算,由于 RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或 cache。

2).RDD CheckPoint 检查点

所谓的检查点其实就是通过将 RDD 中间结果写入磁盘

由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。

  • 对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发。
  • Checkpoint 的数据通常存储在 HDFS 等容错、高可用的文件系统,可靠性高。
	sc.setCheckpointDir("cp")val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{println("@@@@@@@@@@@@")(word,1)})// checkpoint 需要落盘,需要指定检查点保存路径// 检查点路径保存的文件,当作业执行完毕后,不会被删除// 一般保存路径都是在分布式存储系统:HDFSmapRDD.checkpoint()val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/**************************************")val groupRDD = mapRDD.groupByKey()groupRDD.collect().foreach(println)

输出:
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,1)
(Hello,2)
(Scala,1)
/**************************************
(Spark,CompactBuffer(1))
(Hello,CompactBuffer(1, 1))
(Scala,CompactBuffer(1))
在这里插入图片描述

3).缓存和检查点区别

cache :
1.将数据临时存储在内存中进行数据重用
2.会在血缘关系中添加新的依赖。一旦,出现问题,可以重头读取数据
persist :
1.将数据临时存储在磁盘文件中进行数据重用
2.涉及到磁盘IO,性能较低,但是数据安全
3.如果作业执行完毕,临时保存的数据文件就会丢失
checkpoint :
1.将数据长久地保存在磁盘文件中进行数据重用
2.涉及到磁盘IO,性能较低,但是数据安全
3.为了保证数据安全,所以一般情况下,会独立执行作业
4.为了能够提高效率,一般情况下,是需要和cache联合使用
5.执行过程中,会切断血缘关系。重新建立新的血缘关系,checkpoint等同于改变数据源

cache改变血缘关系:

val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{(word,1)})mapRDD.cache()println(mapRDD.toDebugString)val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/**************************************")println(mapRDD.toDebugString)

(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 [Memory Deserialized 1x Replicated]
| MapPartitionsRDD[1] at flatMap at RDD_Perist.scala:83 [Memory Deserialized 1x Replicated]
| ParallelCollectionRDD[0] at makeRDD at RDD_Perist.scala:82 [Memory Deserialized 1x Replicated]
(Spark,1)
(Hello,2)
(Scala,1)
/**************************************
(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 [Memory Deserialized 1x Replicated]
| CachedPartitions: 1; MemorySize: 368.0 B; ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
| MapPartitionsRDD[1] at flatMap at RDD_Perist.scala:83 [Memory Deserialized 1x Replicated]
| ParallelCollectionRDD[0] at makeRDD at RDD_Perist.scala:82 [Memory Deserialized 1x Replicated]

Checkpoint切断血缘关系:

sc.setCheckpointDir("cp")val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{(word,1)})mapRDD.checkpoint()println(mapRDD.toDebugString)val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/**************************************")println(mapRDD.toDebugString)

(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 []
| MapPartitionsRDD[1] at flatMap at RDD_Perist.scala:83 []
| ParallelCollectionRDD[0] at makeRDD at RDD_Perist.scala:82 []
(Spark,1)
(Hello,2)
(Scala,1)
/**************************************
(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 []
| ReliableCheckpointRDD[4] at collect at RDD_Perist.scala:91 []

建议对 checkpoint()的 RDD 使用 Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次 RDD。

//一起使用
mapRDD.cache()
mapRDD.checkpoint()

这篇关于Spark学习笔记(详解,附代码实列和图解)----------RDD(三)持久化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592026

相关文章

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

C#特性(Attributes)和反射(Reflection)详解

《C#特性(Attributes)和反射(Reflection)详解》:本文主要介绍C#特性(Attributes)和反射(Reflection),具有很好的参考价值,希望对大家有所帮助,如有错误... 目录特性特性的定义概念目的反射定义概念目的反射的主要功能包括使用反射的基本步骤特性和反射的关系总结特性

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

MySQL中SQL的执行顺序详解

《MySQL中SQL的执行顺序详解》:本文主要介绍MySQL中SQL的执行顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql中SQL的执行顺序SQL执行顺序MySQL的执行顺序SELECT语句定义SELECT语句执行顺序总结MySQL中SQL的执行顺序

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java资源管理和引用体系的使用详解

《Java资源管理和引用体系的使用详解》:本文主要介绍Java资源管理和引用体系的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Java的引用体系1、强引用 (Strong Reference)2、软引用 (Soft Reference)3、弱引用 (W

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进