Spark学习笔记(详解,附代码实列和图解)----------RDD(二)行动算子,依赖关系

本文主要是介绍Spark学习笔记(详解,附代码实列和图解)----------RDD(二)行动算子,依赖关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

四.RDD行动算子

行动算子

  1. 所谓的行动算子,其实就是触发作业(Job)执行的方法
  2. 底层代码调用的是环境对象的runJob方法
  3. 底层代码中会创建ActiveJob,并提交执行。

1.reduce

➢ 函数签名
def reduce(f: (T, T) => T): T
➢ 函数说明
聚集 RDD中的所有元素,先聚合分区内数据,再聚合分区间数据

    val rdd=sc.makeRDD(List(1,2,3,4))val result = rdd.reduce(_+_)println(result)

输出10

2.collect

➢ 函数签名
def collect(): Array[T]
➢ 函数说明
在驱动程序中,以数组 Array 的形式返回数据集的所有元素

	val rdd=sc.makeRDD(List(1,2,3,4))val ints: Array[Int] = rdd.collect()println(ints.mkString(","))

输出:1,2,3,4

3.count

➢ 函数签名
def count(): Long
➢ 函数说明
返回 RDD 中元素的个数

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val countResult: Long = rdd.count()

输出:4

4.first

➢ 函数签名
def first(): T
➢ 函数说明
返回 RDD 中的第一个元素

	val rdd=sc.makeRDD(List(1,2,3,4))val first = rdd.first()println(first)

输出:1

5.take

➢ 函数签名
def take(num: Int): Array[T]
➢ 函数说明
返回一个由 RDD 的前 n 个元素组成的数组

	val rdd=sc.makeRDD(List(1,2,3,4))val ints1: Array[Int] = rdd.take(num=3)println(ints1.mkString(","))

输出:1,2,3

6.takeOrdered

➢ 函数签名
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
➢ 函数说明
返回该 RDD 排序后的前 n 个元素组成的数组

	val rdd1=sc.makeRDD(List(4,2,3,4))val ints2: Array[Int] = rdd.takeOrdered(num=3)println(ints2.mkString(","))

输出:1,2,3

7.aggrgate

➢ 函数签名
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
➢ 函数说明
分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合

	val rdd=sc.makeRDD(List(1,2,3,4))val result: Int = rdd.aggregate(zeroValue = 0)(_+_,_+_)println(result)

输出:10
区别:
aggregateByKey : 初始值只会参与分区内计算
aggregate : 初始值会参与分区内计算,并且和参与分区间计算

 val rdd = sc.makeRDD(List(1,2,3,4),2)//10 + 13 + 17 = 40
// aggregateByKey : 初始值只会参与分区内计算
// aggregate : 初始值会参与分区内计算,并且和参与分区间计算
val result = rdd.aggregate(10)(_+_, _+_)println(result)

输出:40

8.fold

➢ 函数签名
def fold(zeroValue: T)(op: (T, T) => T): T
➢ 函数说明
折叠操作,aggregate 的简化版操作

val rdd = sc.makeRDD(List(1,2,3,4),2)
val result = rdd.fold(10)(_+_)println(result)

输出:40

9.countByValue

	val rdd=sc.makeRDD(List(1,1,3,4))val intToLong: collection.Map[Int, Long] = rdd.countByValue()println(intToLong)

输出:Map(4 -> 1, 1 -> 2, 3 -> 1)

10.countByKey

➢ 函数签名
def countByKey(): Map[K, Long]
➢ 函数说明
统计每种 key 的个数

	val rdd=sc.makeRDD(List(("a",1),("a",2),("a",3)))val stringToLong: collection.Map[String, Long] = rdd.countByKey()println(stringToLong)

输出:Map(a -> 3)

11.save相关算子

➢ 函数签名
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
path: String,
codec: Option[Class[_ <: CompressionCodec]] = None): Unit
➢ 函数说明
将数据保存到不同格式的文件中

 val rdd = sc.makeRDD(List(("a", 1),("a", 2),("a", 3) ))
rdd.saveAsTextFile("output")
rdd.saveAsObjectFile("output1")
// saveAsSequenceFile方法要求数据的格式必须为K-V类型
rdd.saveAsSequenceFile("output2")

11. foreach

➢ 函数签名
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
➢ 函数说明
分布式遍历 RDD 中的每一个元素,调用指定函数

	val rdd = sc.makeRDD(List(1,2,3,4))// foreach 其实是Driver端内存集合的循环遍历方法rdd.collect().foreach(println)println("aaaaaa------aaaaaaaa")// foreach 其实是Executor端内存数据打印rdd.foreach(println)

输出:
1
2
3
4
aaaaaa------aaaaaaaa
1
2
3
4
算子 : Operator(操作)
RDD的方法和Scala集合对象的方法不一样
集合对象的方法都是在同一个节点的内存中完成的。
RDD的方法可以将计算逻辑发送到Executor端(分布式节点)执行
为了区分不同的处理效果,所以将RDD的方法称之为算子。
RDD的方法外部的操作都是在Driver端执行的,而方法内部的逻辑代码是在Executor端执行。

  • Scala方法图示

在这里插入图片描述

  • RDD方法图示
    在这里插入图片描述

五.RDD依赖关系

1.血缘关系

RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列 Lineage(血统)记录下来,以便恢复丢失的分区。RDD 的 Lineage 会记录 RDD 的元数据信息和转换行为,当该 RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
在这里插入图片描述
在这里插入图片描述eg:wordcount
在这里插入图片描述
代码展示

def main(args: Array[String]): Unit = {val sparConf = new SparkConf().setMaster("local").setAppName("WordCount").set("spark.testing.memory","2147480000")val sc = new SparkContext(sparConf)val lines: RDD[String] = sc.textFile("datas/word.txt")println(lines.toDebugString)println("/*************************")val words: RDD[String] = lines.flatMap(_.split(" "))println(words.toDebugString)println("/*************************")val wordToOne = words.map(word=>(word,1))println(wordToOne.toDebugString)println("/*************************")val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_)println(wordToSum.toDebugString)println("/*************************")val array: Array[(String, Int)] = wordToSum.collect()array.foreach(println)sc.stop()}

输出:

(1) datas/word.txt MapPartitionsRDD[1] at textFile at RDD_Depenency.scala:10 []
| datas/word.txt HadoopRDD[0] at textFile at RDD_Depenency.scala:10 []
/*************************
(1) MapPartitionsRDD[2] at flatMap at RDD_Depenency.scala:13 []
| datas/word.txt MapPartitionsRDD[1] at textFile at RDD_Depenency.scala:10 []
| datas/word.txt HadoopRDD[0] at textFile at RDD_Depenency.scala:10 []
/*************************
(1) MapPartitionsRDD[3] at map at RDD_Depenency.scala:16 []
| MapPartitionsRDD[2] at flatMap at RDD_Depenency.scala:13 []
| datas/word.txt MapPartitionsRDD[1] at textFile at RDD_Depenency.scala:10 []
| datas/word.txt HadoopRDD[0] at textFile at RDD_Depenency.scala:10 []
/*************************
(1) ShuffledRDD[4] at reduceByKey at RDD_Depenency.scala:19 []
±(1) MapPartitionsRDD[3] at map at RDD_Depenency.scala:16 []
| MapPartitionsRDD[2] at flatMap at RDD_Depenency.scala:13 []
| datas/word.txt MapPartitionsRDD[1] at textFile at RDD_Depenency.scala:10 []
| datas/word.txt HadoopRDD[0] at textFile at RDD_Depenency.scala:10 []
/*************************
(spark,1)
(Hello,2)
(Scala,1)

2.依赖关系

依赖关系其实就是两个相邻 RDD 之间的关系

val lines: RDD[String] = sc.textFile("datas/word.txt")println(lines.dependencies)println("/*************************")val words: RDD[String] = lines.flatMap(_.split(" "))println(words.dependencies)println("/*************************")val wordToOne = words.map(word=>(word,1))println(wordToOne.dependencies)println("/*************************")val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_)println(wordToSum.dependencies)println("/*************************")val array: Array[(String, Int)] = wordToSum.collect()array.foreach(println)

List(org.apache.spark.OneToOneDependency@bb9ab64)
/*************************
List(org.apache.spark.OneToOneDependency@3b05a99b)
/*************************
List(org.apache.spark.OneToOneDependency@889d9e8)
/*************************
21/01/29 15:58:01 INFO FileInputFormat: Total input paths to process : 1
List(org.apache.spark.ShuffleDependency@700f518a)
/*************************
(spark,1)
(Hello,2)
(Scala,1)

3.窄依赖

窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女。

class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)

在这里插入图片描述

4.宽依赖

宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle
源码展示:

class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](@transient private val _rdd: RDD[_ <: Product2[K, V]],val partitioner: Partitioner,val serializer: Serializer = SparkEnv.get.serializer,val keyOrdering: Option[Ordering[K]] = None,val aggregator: Option[Aggregator[K, V, C]] = None,val mapSideCombine: Boolean = false)extends Dependency[Product2[K, V]]

在这里插入图片描述

5.阶段划分

一个Job会被拆分为多组Task,每组任务被称为一个Stage就像Map Stage, Reduce Stage

DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。例如,DAG 记录了RDD 的转换过程和任务的阶段

在这里插入图片描述RDD之间的依赖关系将DAG图划分为不同的阶段,对于窄依赖,由于partition依赖关系的确定性,partition的转换处理就可以在同一个线程里完成,窄依赖就被spark划分到同一个stage中,而对于宽依赖,只能等父RDD shuffle处理完成后,下一个stage才能开始接下来的计算。
即:遇到宽依赖就断开,划分为一个stage;遇到窄依赖就将这个RDD加入该stage中。一个宽依赖就分一个stage,每个shuffle之前都是一个stage。
在这里插入图片描述

6.任务划分

RDD 任务切分中间分为:Application、Job、Stage 和 Task

  • Application:初始化一个 SparkContext 即生成一个 Application;
  • Job:一个 Action 算子就会生成一个 Job;
  • Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1;
  • Task:一个 Stage 阶段中,最后一个 RDD 的分区个数就是 Task 的个数

注意:Application->Job->Stage->Task 每一层都是 1 对 n 的关系。
在这里插入图片描述在spark中Task的类型分为2种:ShuffleMapTask和ResultTask;
DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中。
在这里插入图片描述

这篇关于Spark学习笔记(详解,附代码实列和图解)----------RDD(二)行动算子,依赖关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592025

相关文章

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

SpringBoot请求参数传递与接收示例详解

《SpringBoot请求参数传递与接收示例详解》本文给大家介绍SpringBoot请求参数传递与接收示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录I. 基础参数传递i.查询参数(Query Parameters)ii.路径参数(Path Va

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队