imgaug库指南(12):从入门到精通的【图像增强】之旅

2024-01-10 19:52

本文主要是介绍imgaug库指南(12):从入门到精通的【图像增强】之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声
imgaug库指南(六):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 双边模糊/滤波
imgaug库指南(七):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 运动模糊
imgaug库指南(八):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值迁移模糊
imgaug库指南(九):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性噪声(Add方法)
imgaug库指南(十):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性噪声(AddElementwise方法)

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)


加性拉普拉斯噪声(AdditiveLaplaceNoise方法)

功能介绍

AdditiveLaplaceNoiseimgaug库中的一个方法,用于向图像添加拉普拉斯噪声。拉普拉斯噪声是一种具有重尾分布的噪声,与高斯噪声相比,它在远离均值的地方有更多的值。这种噪声常常被用来模拟图像在恶劣条件下的退化。

The laplace distribution is similar to the gaussian distribution, but puts more weight on the long tail. Hence, this noise will add more outliers (very high/low values). It is somewhere between gaussian noise and salt and pepper noise.
翻译:拉普拉斯分布与高斯分布有一定相似性,但它在长尾区域赋予了更多的权重。这种特性使得噪声中异常值(过高或过低的数值)出现的几率增加。在噪声类型上,拉普拉斯噪声处于高斯噪声和椒盐噪声之间,为我们提供了更多的选择和灵活性。

语法

import imgaug.augmenters as iaa
aug = iaa.AdditiveLaplaceNoise(loc=0, scale=(0, 15), per_channel=False)
  • loc: 产生噪声的拉普拉斯分布的均值。
    • loc为整数,则噪声的均值即为value
    • loc为元组(a, b),则均值为从区间[a, b]中采样的随机数;
    • loc为列表,则均值为从列表中随机采样的数;
  • scale: 产生噪声的拉普拉斯分布的标准差。
    • scale为整数,则噪声的标准差即为scale
    • scale为元组(a, b),则噪声的标准差为从区间[a, b]中采样的随机数;
    • scale为列表,则噪声的标准差为从列表中随机采样的数;
  • per_channel:
    • per_channelTrue,则为每幅图像的每个像素点对应的通道上加上随机整数 ==> RGB图像指定像素位置上的三个通道分别对应三个随机整数,且每个像素点都对应不同的三个随机整数;
    • per_channelFalse,则为每幅图像的每个像素点对应的通道上加上随机采样的相同整数 ==> RGB图像指定像素位置上的三个通道都是同一个随机整数,但每个像素点都对应不同的随机整数;
    • per_channel为区间[0,1]的浮点数,假设per_channel=0.6,那么对于60%的图像,per_channelTrue;对于剩余的40%的图像,per_channelFalse

示例代码

  1. 使用不同的loc
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建数据增强器
aug1 = iaa.AdditiveLaplaceNoise(loc=0, scale=30, per_channel=False)
aug2 = iaa.AdditiveLaplaceNoise(loc=60, scale=30, per_channel=False)
aug3 = iaa.AdditiveLaplaceNoise(loc=120, scale=30, per_channel=False)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化

可以看到,三幅数据增强后的图像,其亮度相对于原图而言,都整体变亮/暗了,并且出现了大量噪声。

  1. 使用不同的scale
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建增强器
aug1 = iaa.AdditiveLaplaceNoise(loc=60, scale=0, per_channel=False)
aug2 = iaa.AdditiveLaplaceNoise(loc=60, scale=30, per_channel=False)
aug3 = iaa.AdditiveLaplaceNoise(loc=60, scale=60, per_channel=False)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化

可以从图2看出:

  • 当标准差参数scale=0时⇒ 增强器为RGB图像的每个像素位置上都添加了相同的数值 ⇒ 数据增强后,新图像亮度整体变大了(均值为60),且无噪声。
  • 当标准差参数scale!=0时⇒ 增强器为RGB图像的每个像素位置上都添加了随机的数值 ⇒ 数据增强后,新图像亮度整体变大了(均值为60),且出现了大量噪声。

注意事项

  1. 噪声的特性:拉普拉斯噪声是一种具有重尾分布的噪声,它会产生较亮的像素值,这可能会影响到图像的视觉效果。
  2. 标准差的选择scale参数决定了噪声的强度。较大的标准差会产生更明显的噪声,而较小的标准差则产生较弱的噪声。需要根据实际需求调整。
  3. 通道独立性:如果设置了per_channel=True,则会对每个通道独立地应用噪声。这在某些情况下可能是有用的,例如,当你想对图像的不同颜色通道应用不同的噪声时。
  4. 与其他增强器的结合使用:可以与其他图像增强方法结合使用,以获得更丰富的效果。例如,可以先应用中值模糊,然后再添加拉普拉斯噪声。
  5. 数值范围:在添加噪声后,需要确保图像的像素值仍然在合适的范围内(例如,对于8位图像,范围是0-255)。如果超出范围,可能会导致图像失真。

总结

AdditiveLaplaceNoiseimgaug库中一个非常有用的方法,用于向图像添加拉普拉斯噪声。这种噪声在模拟图像在恶劣条件下的退化时非常有用。使用时需要注意噪声的特性、标准差的调整、通道独立性的选择、与其他增强器的结合以及数值范围等问题。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

这篇关于imgaug库指南(12):从入门到精通的【图像增强】之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591893

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编