[BZOJ 1492][NOI2007]货币兑换Cash:CDQ分治|DP斜率优化

2024-01-10 19:18

本文主要是介绍[BZOJ 1492][NOI2007]货币兑换Cash:CDQ分治|DP斜率优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击这里查看原题

首先贪心的想,每次买卖必然要买空或者卖空,因为有便宜就尽量去占,于是可以得到方程:

f[i]=max{f[j]/(a[j]*rate[j]+b[j])*rate[j]*a[i]+f[j]/(a[j]*rate[j]+b[j])*b[i]}

其中,x[j]=f[j]/(a[j]*rate[j]+b[j])*rate[j]表示第j天最多可以拥有的A货币的数量,y[j]=f[j]/(a[j]*rate[j]+b[j])表示第j天最多可以拥有的B货币的数量
于是可以得到斜截式:y[j]=f[i]/b[i]-x[j]*a[i]/b[i],也就是说需要得到最优的点(x[j],y[j])使截距最大,于是维护一个上凸壳。
但是斜率-a[i]/b[i]是无序的,不能直接斜率优化。一个办法是用平衡树维护凸壳,这样代码量太大,也不易于调试。
因此,接下来使用我们的重头戏——CDQ分治。
CDQ分治中我们不需要考虑右区间内各个点之间的影响,只需考虑左区间对右区间的影响,因此将左边按坐标排序,右边按斜率排序,即可套用斜率优化。

/*
User:Small
Language:C++
Problem No.:1492
*/
#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
const int M=1e5+5;
const double eps=1e-6;
int n,stk[M],tp;
double f[M];
struct no{double a,b,rate,k;int pos;bool operator<(no y)const{return k<y.k;}
}q[M],nq[M];
struct node{double x,y;bool operator<(node a)const{return fabs(x-a.x)<eps?y<a.y+eps:x<a.x+eps;}
}p[M],np[M];
double getk(int i,int j){return fabs(p[i].x-p[j].x)<eps?-inf:(p[i].y-p[j].y)/(p[i].x-p[j].x);
}
void solve(int l,int r){if(l==r){f[l]=max(f[l-1],f[l]);p[l].y=f[l]/(q[l].a*q[l].rate+q[l].b);p[l].x=p[l].y*q[l].rate;return;}int mid=l+r>>1,l1=l,l2=mid+1;for(int i=l;i<=r;i++){if(q[i].pos<=mid) nq[l1++]=q[i];else nq[l2++]=q[i];}for(int i=l;i<=r;i++) q[i]=nq[i];solve(l,mid);tp=0;for(int i=l;i<=mid;i++){while(tp>1&&getk(i,stk[tp])+eps>getk(stk[tp],stk[tp-1])) tp--;stk[++tp]=i;}for(int i=r,j=1;i>=mid+1;i--){while(j<tp&&q[i].k<getk(stk[j],stk[j+1])+eps) j++;f[q[i].pos]=max(f[q[i].pos],p[stk[j]].x*q[i].a+p[stk[j]].y*q[i].b);}solve(mid+1,r);l1=l,l2=mid+1;for(int i=l;i<=r;i++){np[i]=((p[l1]<p[l2]||l2>r)&&(l1<=mid))?p[l1++]:p[l2++];}for(int i=l;i<=r;i++) p[i]=np[i];
}
int main(){freopen("data.in","r",stdin);//scanf("%d%lf",&n,&f[0]);for(int i=1;i<=n;i++){scanf("%lf%lf%lf",&q[i].a,&q[i].b,&q[i].rate);q[i].k=-q[i].a/q[i].b;q[i].pos=i;}sort(q+1,q+n+1);solve(1,n);printf("%.3f",f[n]);return 0;
}

这篇关于[BZOJ 1492][NOI2007]货币兑换Cash:CDQ分治|DP斜率优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591808

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器