MySQL索引的优化之LIKE模糊查询功能实现

2025-04-21 17:50

本文主要是介绍MySQL索引的优化之LIKE模糊查询功能实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧...

在使用mysql进行模糊查询时,LIKE语句的性能可能会受到较大影响,尤其是在数据量较大的情况下。

但本质上,用like进行模糊查询,只有以下三种情况:

  • 前缀匹配:如果模糊查询是前缀匹配(如 LIKE '%abc' ),MySQL可以使用索引来加速查询。确保在相关列上创建了索引
  • 后缀匹配:对于后缀匹配(如LIKE 'abc%'),MySQL无法使用普通的B-tree索引。可以考虑使用反向索引(Reverse Index)或全文索引(Full-Text Index)
  • 中间匹配:对于中间匹配(如LIKE '%abc%'),MySQL也无法使用普通的B-tree索引。全文索引或搜索引擎(如Elasticsearcha)可能是更好的选择。

一、前缀匹配优化

前缀匹配(如LIKE 'abc%')可以使用B-tree索引,因此性能较好。确保在相关列上创建索引

示例:

-- 创建表
CREATE TABLE users (
    id INT PRIMARY KEY AUTO_INCREMENT,
    username VARCHAR(255) NOT NULL
);
​
-- 插入数据
INSERT INTO users (username) VALUES ('john_doe'), ('jane_doe'), ('aljavascriptice'), ('bob'), ('john_smith');
​
-- 创建索引
CREATE INDEX idxphp_username ON users(username);
​
-- 前缀匹配查询
EXPLAIN SELECT * FROM users WHERE username LIKE 'john%';
  • 执行计划分析
    • 如果使用了索引,EXPLAIN结果中的key列会显示idx_username,表明查询使用了索引
    • type会显示range,表示使用了索引范围扫描

二、后缀匹配优化

后缀匹配(如LIKE '%abc'),无法直接使用B-tree索引,可以通过反转字符串并创建索引来优化

示例:

-- 添加反转列
ALTER TABLE users ADD COLUMN reversed_username VARCHAR(255);
​
-- 更新反转列数据
UPDATE users SET reversed_username = REVERSE(username);
-- REVERSE('helloNnMFdC') 的结果是 'olleh'
​
-- 创建反转列索引
CREATE INDEX idx_reversed_username ON users(reversed_username);
​
-- 后缀匹配查询(转换为前缀匹配)
EXPLAIN SELECT * FROM users WHERE reversed_username LIKE REVERSE('doe') + '%';
  • 执行计划分析
    • 查询反转后的列时,EXPLAIN结果中的key列会显示idx_reversed_username,表明使用了索引
    • type列会显示range,表示使用了索引范围扫描

三、中间匹配优化

中间匹配(如LIKE '%abc%')无法使用B-tree索引。可以考虑使用全文索引或外部搜索引擎

示例(使用全文索引)

-- 创建全文索引
CREATE FULLTEXT INDEX idx_username_fulltext ON users(username);
​
-- 全文索引查询
EXPLAIN SELECT * FROM users WHERE MATCH(username) AGAINST('doe');
  • 执行计划分析:
    • EXPLAIN结果中的key列会显示idx_username_fulltext,表明使用了全文索引
    • type列会显示fulltext,表示使用了全文索引

四、覆盖索引优化

如果查询只需要返回索引列,可以使用覆盖索引(Covering index),避免回表操作

示例:

-- 创建覆盖索引
CREATE INDEX idx_username_covering ON users(username, id);
​
-- 覆盖索引查询
EXPLAIN SELECT username FROM users WHERE username LIKE 'john%';

五、减少查询范围

通过其他条件缩小查询范围,减少模糊查询的数据量

示例:

-- 假设有一个注册时间列
ALTER TABLE users ADD COLUMN registered_at DATETIME;
​
-- 插入数据
UPDATE users SET registered_at = NOW() - INTERVAL FLOOR(RAND() * 365) DAY;
​
-- 缩小查询范围
EXPLAIN SELECT * FROM users 
WHERE registered_at > '2023-01-01' 
AND username LIKE 'john%';
  • 执行计划分析
    • EXPLAIN结果中的key列会显示idx_username,表明使用了索引
    • rows列的值会减少,表明查询范围缩小

六、避免通配符开头

尽量避免在LIKE语句中使用通配符开头(如%abc),因为这种查询无法使用索引

示例:

-- 不推荐的查询
EXPLAIN SELECT * FROM users WHERE username LIKE '%doe';
​
-- 优化后的查询(使用全文索引)
EXPLAIN SELECT * FROM users WHERE MATCH(username) AGAINST('doe');
  • 执行计划分析
    • 不推荐的查询中,type列会显示ALL,表示全表扫描。
    • 优化后的查询中,type列会显示fulltext,表示使用了全文索引。

七、使用外部搜索引擎

对于复杂的模糊查询需求,尤其是大数据量场景,可以使用外部搜索引擎(如Elatsticsearch)

示例

  • 将数据同步到Elasticsearch。
  • 使用Elasticsearch进行模糊查询。

八、分区表优化

如果数据量非常大,可以使用分区表(Partitioning),来较少每次查询需要扫描的数据量

示例:

-- 创建分区表
CREATE TABLE users_partitioned (
    id INT PRIMARY KEY AUTO_INCREMENT,
    username VARCHAR(255) NOT NULL,
    registered_at DATETIME
) PARTITION BY RANGE (YEAR(registered_at)) (
    PARTITION p0 VALUES LESS THAN (2020),
    PARTITION p1 VALUES LESS THAN (2021),
    jsPARTITION p2 VALUES LESS THAN (2022),
    PARTITION p3 VALUES LESS THAN (2023),
    PARTITION p4 VALUES LESS THAN MAXVALUE
);
​
-- 插入数据
INSERT INTO users_partitioned (username, registered_at) 
SELECT username, registered_at FROM users;
​
-- 分区表查询
EXPLAIN SELECT * FROM users_partitioned 
WHERE registered_at > '2023-01-01' 
AND username LIKE 'john%';
  • 执行计划分析
    • EXPLAIN结果中的partitions列会显示查询涉及的分区,表明查询只扫描了部分数据。

九、缓存结果

如果模糊查询的结果不经常变化,可以将查询结果缓存起来,减少数据库的查询压力

示例:

python
  • 使用Redis缓存查询结果
  • 设置缓存的过期时间,确保数据的时效性

总结

通过以上方法,可以显著优化MySQL中LIKE模糊查询的性能。根据具体的业务需求和数据特点,选择合适的优化策略:

  • 前缀匹配:使用普通索引。
  • 后缀匹配:使用反转索引。
  • 中间匹配:使用全文索引或外部搜索引擎。
  • 大数据量:使用分区表或外部搜索引擎。
  • 高频查询:使用缓存。

注:了解MySQL-MATCH ... AGAINST工具参考MySQL-MATCH ... AGAINST工具

到此这篇关于MySQL--索引的优化--LIKE模糊查询的文章就介绍到这了,更多相关mysql like模糊查询内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于MySQL索引的优化之LIKE模糊查询功能实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154311

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也