行人重识别reid数据集

2024-01-10 10:58
文章标签 数据 行人 识别 reid

本文主要是介绍行人重识别reid数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有需要的人,请在评论区留下你的邮箱。

本人,双非学校小硕。研究方向行人重识别。收集了一些常用数据集。

Market-1501-v15.09.15

在这里插入图片描述

dukemtmc-reid

在这里插入图片描述

顺便附上一个根据相机id划分数据集的代码

import os
import shutil
import os.path as osp
import numpy as np
import glob
import re
from collections import defaultdictfrom tqdm import tqdmdef _process_dir(dir_path, relabel=False):img_paths = glob.glob(osp.join(dir_path, '*.jpg'))  # 把此文件夹下的以jpg结尾的文件路径获取pattern = re.compile(r'([-\d]+)_c(\d)')# 将源pid构建一个映射,得到新的对应标签pid_container = set()  # 定义集合。重复数据会被删除,同时会排序for img_path in img_paths:pid, _ = map(int, pattern.search(img_path).groups())  # 只有两段都是数字。map映射if pid == -1: continue  # 有一些辣鸡数据pid_container.add(pid)pid2label = {pid: label for label, pid in enumerate(pid_container)}# 将数据打包成元组,进行储存dataset = []for img_path in img_paths:pid, camid = map(int, pattern.search(img_path).groups())if pid == -1: continue#assert 0 <= pid <= 1501assert 1 <= camid <= 8camid -= 1if relabel: pid = pid2label[pid]dataset.append((img_path, pid, camid))num_pids = len(pid_container)num_imgs = len(dataset)return dataset, num_pids, num_imgs  # dataset打包好的数据if __name__ == '__main__':img_dir = os.path.join('cam_0_ID')img_dir1 = os.path.join('cam_1_ID')img_dir2 = os.path.join('cam_2_ID')img_dir3 = os.path.join('cam_3_ID')img_dir4 = os.path.join('cam_4_ID')img_dir5 = os.path.join('cam_5_ID')img_dir6 = os.path.join('cam_6_ID')img_dir7 = os.path.join('cam_7_ID')img_names=os.listdir(img_dir) #所有文件名img_set,_,_=_process_dir(img_dir)camid_to_img=defaultdict(list)for i in img_set:# print(i)camid_to_img[i[2]].append(i[0])#print(camid_to_img[1])#print(len(camid_to_img.keys())) ==6for i in tqdm(range(len(camid_to_img.keys()))):os.mkdir(os.path.join('cam_{}_ID').format(i))target_file=os.path.join('cam_{}_ID').format(i)for j in range(len(camid_to_img[i])):img_name = '\\'.join(camid_to_img[i][j].split('\\')[1:]) #文件名#print(img_name)if img_name in img_names:target_path = os.path.join(target_file, img_name)src_path = os.path.join(img_dir,img_name)shutil.copy(src_path, target_path)

MSMT17(最初的版本)(建议做科研的话,使用最初的版本)

因为根据个人实验经历来看,这个版本的评估才是准确的。后面的更改的后的V1或者V2版本有误差。
在这里插入图片描述
dataset的代码:

from __future__ import print_function, absolute_import
import os.path as osp
import tarfileimport glob
import re
import urllib
import zipfilefrom ..utils.osutils import mkdir_if_missing
from ..utils.serialization import write_jsondef _pluck_msmt(list_file, subdir, pattern=re.compile(r'([-\d]+)_([-\d]+)_([-\d]+)')):with open(list_file, 'r') as f:lines = f.readlines()ret = []pids = []for line in lines:line = line.strip()fname = line.split(' ')[0]pid, _, cam = map(int, pattern.search(osp.basename(fname)).groups())if pid not in pids:pids.append(pid)ret.append((osp.join(subdir,fname), pid, cam))return ret, pidsclass Dataset_MSMT(object):def __init__(self, root):self.root = rootself.train, self.val, self.trainval = [], [], []self.query, self.gallery = [], []self.num_train_ids, self.num_val_ids, self.num_trainval_ids = 0, 0, 0@propertydef images_dir(self):return osp.join(self.root, 'MSMT17_V1')def load(self, verbose=True):exdir = osp.join(self.root, 'MSMT17_V1')self.train, train_pids = _pluck_msmt(osp.join(exdir, 'list_train.txt'), 'train')self.val, val_pids = _pluck_msmt(osp.join(exdir, 'list_val.txt'), 'train')self.train = self.train + self.valself.query, query_pids = _pluck_msmt(osp.join(exdir, 'list_query.txt'), 'test')self.gallery, gallery_pids = _pluck_msmt(osp.join(exdir, 'list_gallery.txt'), 'test')self.num_train_pids = len(list(set(train_pids).union(set(val_pids))))if verbose:print(self.__class__.__name__, "dataset loaded")print("  subset   | # ids | # images")print("  ---------------------------")print("  train    | {:5d} | {:8d}".format(self.num_train_pids, len(self.train)))print("  query    | {:5d} | {:8d}".format(len(query_pids), len(self.query)))print("  gallery  | {:5d} | {:8d}".format(len(gallery_pids), len(self.gallery)))class MSMT17(Dataset_MSMT):def __init__(self, root, split_id=0, download=True):super(MSMT17, self).__init__(root)if download:self.download()self.load()def download(self):import reimport hashlibimport shutilfrom glob import globfrom zipfile import ZipFileraw_dir = osp.join(self.root)mkdir_if_missing(raw_dir)# Download the raw zip filefpath = osp.join(raw_dir, 'MSMT17_V1')if osp.isdir(fpath):print("Using downloaded file: " + fpath)else:raise RuntimeError("Please download the dataset manually to {}".format(fpath))

MSMT17_V1(重命名图片版本)

之后有研究者为了与market1501统一起来,将图片格式改为与其一致。
在这里插入图片描述
需要的同学,记得点个赞。并留下你的邮箱。

这篇关于行人重识别reid数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/590543

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文