【机器学习】模型参数优化工具:Optuna使用分步指南(附XGB/LGBM调优代码)

本文主要是介绍【机器学习】模型参数优化工具:Optuna使用分步指南(附XGB/LGBM调优代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

常用的调参方式和工具包

常用的调参方式包括网格搜索(Grid Search)、**随机搜索(Random Search)贝叶斯优化(Bayesian Optimization)**等。

工具包方面,Scikit-learn提供了GridSearchCV和RandomizedSearchCV等用于网格搜索和随机搜索的工具。另外,有一些专门用于超参数优化的工具包,如OptunaHyperopt等。

这些方法各自有优缺点。网格搜索和随机搜索易于理解和实现,但在超参数空间较大时计算代价较高。贝叶斯优化考虑了不同参数之间的关系,可以在较少实验次数内找到较优解,但实现较为复杂。

Optuna是什么?

Optuna是一个基于贝叶斯优化的超参数优化框架。它的目标是通过智能的搜索策略,尽可能少的实验次数找到最佳超参数组合。Optuna支持各种机器学习框架,包括Scikit-learn、PyTorch和TensorFlow等。

Optuna的优势和劣势

个人使用体验:比起网格搜索和随机搜索,Optuna最明显的优势就是快。虽然最后的提升效果未必有前两种好,但是在整体效率上来看,Optuna能够大大减少调参时间。

优势:

  1. 智能搜索策略: Optuna使用TPE(Tree-structured Parzen Estimator)算法进行贝叶斯优化,能够更智能地选择下一组实验参数,从而加速超参数搜索。
  2. 轻量级: Optuna的设计简单而灵活,易于集成到现有的机器学习项目中。
  3. 可视化支持: 提供结果可视化工具,帮助用户直观地了解实验过程和结果。
  4. 并行优化: Optuna支持并行优化,能够充分利用计算资源,提高搜索效率。

劣势:

  1. 适用范围: 对于超参数空间较小或者问题较简单的情况,Optuna的优势可能不如其他方法显著。

如何使用Optuna进行调参?

使用Optuna进行调参的基本步骤如下:

  1. 定义超参数搜索空间: 使用Optuna的API定义超参数的搜索范围,例如学习率、层数等。
  2. 定义目标函数: 编写一个目标函数,用于评估给定超参数组合的模型性能。
  3. 运行Optuna优化: 使用Optuna的optimize函数运行优化过程,选择适当的搜索算法和优化目标。
  4. 获取最佳超参数: 通过Optuna提供的API获取找到的最佳超参数组合。

调参代码示例

主要分为几个步骤:

  1. 定义目标函数: 1)定义参数搜索范围 2)定义、训练和评估模型
  2. 运行Optuna优化
  3. 获取最佳超参数

1. SVM调优例子

以下是一个使用Optuna进行超参数优化的简单示例,假设我们使用Scikit-learn中的SVM进行分类:

import optuna
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC# 载入数据
data = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)# 定义目标函数
def objective(trial):# 定义超参数搜索范围C = trial.suggest_loguniform('C', 1e-5, 1e5)gamma = trial.suggest_loguniform('gamma', 1e-5, 1e5)# 构建SVM模型model = SVC(C=C, gamma=gamma)# 训练和评估模型model.fit(X_train, y_train)accuracy = model.score(X_test, y_test)return accuracy# 运行Optuna优化
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)# 获取最佳超参数
best_params = study.best_params
print("最佳超参数:", best_params)

2.LGBM调优例子

def objective(trial):params = {'objective': 'multiclass','metric': 'multi_logloss',  # Use 'multi_logloss' for evaluation'boosting_type': 'gbdt','num_class': 3,  # Replace with the actual number of classes'num_leaves': trial.suggest_int('num_leaves', 2, 256),'learning_rate': trial.suggest_loguniform('learning_rate', 0.001, 0.1),'feature_fraction': trial.suggest_uniform('feature_fraction', 0.1, 1.0),'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.1, 1.0),'bagging_freq': trial.suggest_int('bagging_freq', 1, 10),'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),}model = lgb.LGBMClassifier(**params)model.fit(X_train, y_train)y_pred = model.predict_proba(X_val)    loss = log_loss(y_val, y_pred)return lossstudy = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50,show_progress_bar=True)# Get the best parameters
best_params = study.best_params
print(f"Best Params: {best_params}")

3.XGB调优例子

def objective(trial):params = {'objective': 'multi:softprob',  # 'multi:softprob' for multiclass classification'num_class': 3,  # Replace with the actual number of classes'booster': 'gbtree','eval_metric': 'mlogloss',  # 'mlogloss' for evaluation'max_depth': trial.suggest_int('max_depth', 2, 10),'learning_rate': trial.suggest_loguniform('learning_rate', 0.001, 0.1),'subsample': trial.suggest_uniform('subsample', 0.1, 1.0),'colsample_bytree': trial.suggest_uniform('colsample_bytree', 0.1, 1.0),'min_child_weight': trial.suggest_int('min_child_weight', 1, 10),}model = XGBClassifier(**params)model.fit(X_train, y_train)y_pred = model.predict_proba(X_val)loss = log_loss(y_val, y_pred)return lossstudy = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50, show_progress_bar=True)# Get the best parameters
best_params = study.best_params
print(f"Best Params: {best_params}")

通过这个示例,你可以看到Optuna的简洁和易用性。通过定义搜索空间和目标函数,Optuna会自动选择最优的超参数组合。

总结

Optuna作为一个高效的超参数优化工具,在调参过程中具有明显的优势。通过智能的搜索策略和轻量级的设计,它可以显著减少调参的时间和计算资源成本。当面对大规模超参数搜索问题时,Optuna是一个值得考虑的利器,能够帮助机器学习和数据科学领域的从业者更高效地优化模型性能。

参考链接

官网:https://optuna.org/
说明文档:https://optuna.readthedocs.io/en/stable/
中文文档:https://optuna.readthedocs.io/zh-cn/latest/

这篇关于【机器学习】模型参数优化工具:Optuna使用分步指南(附XGB/LGBM调优代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588781

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash