C语言中栈的表示和实现

2024-01-09 22:44
文章标签 语言 实现 表示 中栈

本文主要是介绍C语言中栈的表示和实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 C 编程语言中,可以使用数组或链表实现堆栈。这两种实现都有其优点和注意事项,因此让我们探讨这两种方法。

1. 使用数组的堆栈实现:
   在此实现中,我们使用数组来表示堆栈。数组将具有固定大小,变量将跟踪堆栈的顶部元素。

''''c
   

#include <stdio.h>

#define MAX_SIZE 100

 

int stack[MAX_SIZE];

int top = -1;

 

// Function to check if the stack is empty

int isEmpty() {

    return (top == -1);

}

 

// Function to check if the stack is full

int isFull() {

    return (top == MAX_SIZE - 1);

}

 

// Function to push an element onto the stack

void push(int item) {

    if (isFull()) {

        printf("Stack Overflow\n");

        return;

    }

    stack[++top] = item;

}

 

// Function to pop an element from the stack

int pop() {

    if (isEmpty()) {

        printf("Stack Underflow\n");

        return -1; // Return an invalid value or handle error appropriately

    }

    return stack[top--];

}

 

// Function to get the top element of the stack

int peek() {

    if (isEmpty()) {

        printf("Stack is empty\n");

        return -1; // Return an invalid value or handle error appropriately

    }

    return stack[top];

}

 

// Function to display the elements of the stack

void display() {

    if (isEmpty()) {

        printf("Stack is empty\n");

        return;

    }

    printf("Stack elements: ");

    for (int i = top; i >= 0; i--) {

        printf("%d ", stack[i]);

    }

    printf("\n");

}

 

// Example usage

int main() {

    push(10);

    push(20);

    push(30);

    display(); // Output: Stack elements: 30 20 10

    printf("%d\n", pop()); // Output: 30

    printf("%d\n", peek()); // Output: 20

    display(); // Output: Stack elements: 20 10

    return 0;

}

```


   '''

2. 使用链表的堆栈实现:
   在此实现中,链表用于表示堆栈。链表的每个节点都包含数据和指向下一个节点的指针。

''''c

 

#include <stdio.h>

#include <stdlib.h>

 

struct Node {

    int data;

    struct Node* next;

};

 

struct Node* top = NULL;

 

// Function to check if the stack is empty

int isEmpty() {

    return (top == NULL);

}

 

// Function to push an element onto the stack

void push(int item) {

    struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

    if (newNode == NULL) {

        printf("Memory allocation failed\n");

        return;

    }

    newNode->data = item;

    newNode->next = top;

    top = newNode;

}

 

// Function to pop an element from the stack

int pop() {

    if (isEmpty()) {

        printf("Stack Underflow\n");

        return -1; // Return an invalid value or handle error appropriately

    }

    struct Node* temp = top;

    int item = temp->data;

    top = top->next;

    free(temp);

    return item;

}

 

// Function to get the top element of the stack

int peek() {

    if (isEmpty()) {

        printf("Stack is empty\n");

        return -1; // Return an invalid value or handle error appropriately

    }

    return top->data;

}

 

// Function to display the elements of the stack

void display() {

    if (isEmpty()) {

        printf("Stack is empty\n");

        return;

    }

    printf("Stack elements: ");

    struct Node* current = top;

    while (current != NULL) {

        printf("%d ", current->data);

        current = current->next;

    }

    printf("\n");

}

 

// Example usage

int main() {

    push(10);

    push(20);

    push(30);

    display(); // Output: Stack elements: 30 20 10

    printf("%d\n", pop()); // Output: 30

    printf("%d\n", peek()); // Output: 20

    display(); // Output: Stack elements: 20 10

    return 0;

}

```


   '''

这两种实现都提供了堆栈的基本操作:“push”用于添加元素,“pop”用于删除顶部元素,“peek”用于检索顶部元素而不删除它,“display”用于打印堆栈的元素。

在基于数组的实现中,我们使用固定大小的数组,并使用“top”变量跟踪顶部元素。函数“isEmpty”和“isFull”分别检查堆栈是空的还是满的,以处理潜在的错误。“push”函数通过递增“top”并将值分配给数组中的相应索引来向堆栈添加元素。'pop' 函数通过递减 'top' 并从数组中返回值来删除 top 元素。“peek”函数在不修改堆栈的情况下返回顶部元素的值。“display”函数以相反的顺序遍历元素并打印它们。

在链表实现中,我们为链表的节点定义了一个结构,其中包含数据和指向下一个节点的指针。“top”指针指向堆栈中的第一个节点。“isEmpty”函数检查“top”指针是否为“NULL”,以确定堆栈是否为空。“push”函数创建一个新节点,分配数据并更新“next”指针以指向上一个顶部节点。“pop”函数删除顶部节点,更新“top”指针,并返回数据。“peek”函数返回顶部节点的数据,而不修改堆栈。“display”函数遍历链表并打印每个节点的数据。

请记住根据特定要求适当地处理错误情况,例如堆栈溢出或下溢。

 

这篇关于C语言中栈的表示和实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588686

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja