MiniTab的正态性检验结果的分析

2024-01-09 21:12

本文主要是介绍MiniTab的正态性检验结果的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

正态性检验概述

可使用 正态性检验 确定数据是否不服从正态分布。

执行菜单:要执行正态性检验,请选择统计 > 基本统计 > 正态性检验。

正态性检验 的假设

对于正态性检验,进行如下假设。

  • H0:数据服从正态分布。
  • H1:数据不服从正态分布。

正态性检验 的数据注意事项

  1. 数据必须为数字:您必须拥有数字数据,如包装重量。
  2. 样本数据应当是随机选择的:在统计学中,随机样本用于对总体做出归纳,即推断。如果数据不是随机收集的,则结果可能无法代表总体。
  3. 样本数量应当大于 20:如果样本数量小于 20,则提供的功效可能不足,无法检测样本数据和正态分布之间的显著差异。但是,在使用很大的样本数量时要格外小心,因为它们可能会提供过大的功效。当检验功效太大时,样本数据和理论分布之间可能无意义的小差异似乎会非常显著。

正态性检验 的示例

一家加工食品生产公司的科研人员想评估本公司生产的瓶装酱料的脂肪百分比。宣传的百分比为 15%。科研人员测量了 20 个随机样本的脂肪百分比。

样本 ID    脂肪百分比
1    15.2
2    12.4
3    15.4
4    16.5
5    15.9
6    17.1
7    16.9
8    14.3
9    19.1
10    18.2
11    18.5
12    16.3
13    20.0
14    19.2
15    12.3
16    12.8
17    17.9
18    16.3
19    18.7
20    16.2

科研人员想在执行假设检验之前验证正态性假设。

  1. 把上述数据输入到Minitab的数据表中。
  2. 选择统计 > 基本统计 > 正态性检验。
  3. 在变量中,输入脂肪百分比。
  4. 单击确定。

选择特定正态性检验

选择一个正态性检验。Anderson-Darling 适用于大多数情况。

  • Anderson-Darling:对于检测数据分布尾部的非正态性而言,该检验通常比其他两种检验更有效。
  • Ryan-Joiner:对于检测非正态性而言,该检验与 Anderson-Darling 具有类似的功能。
  • Kolmogorov-Smirnov:该检验对于正态分布中的小偏差较不敏感。

指定 正态性检验 的百分位线

百分位线有两段与拟合分布线相交。共绘制两段,一段与数据刻度相交,另一段与百分比刻度相交。百分位线通常用于计算检验分数。例如,如果您想要知道第 95 个百分位的检验分数,则可以在 95% 处添加一条百分位线。Minitab 会计算相应的数据值。相反,如果您在数据值处添加一条百分位线,Minitab 会计算相应的百分比。

  • 无:不显示百分位线。
  • 在 Y 值:输入百分位线的 y 刻度值。输入介于 0 和 100 之间的值。

eg:第 95 个百分位:排在第 95 个百分位的员工的检验分数为 31.64。换句话说,有 95% 的员工的分数为 31.64 或更少。

  • 在数据值:输入百分位线的数据值。

eg:检验分数 27:检验分数 27 略高于第 70 个百分位,或者有略多于 70% 的员工的分数为 27 或更少。

 解释结果

主要输出包括 p 值和概率图。

数据点离拟合的正态分布线相对较近。p 值大于显著性水平 0.05。因此,科学家无法否定数据服从正态分布这一原假设。

步骤 1:确定数据是否不服从正态分布

要确定数据是否不服从正态分布,请将 p 值与显著性水平进行比较。通常,显著性水平(用 α 或 alpha 表示)为 0.05 即可。显著性水平 0.05 表示当数据实际上服从正态分布时,断定数据不服从正态分布的风险为 5%。

P 值 ≤ α:数据不服从正态分布(否定 H0)

如果 p 值小于或等于显著性水平,则决策为否定原假设并得出数据不服从正态分布的结论。

P 值 > α:您无法得出数据不服从正态分布的结论(无法否定 H0)

如果 p 值大于显著性水平,则决策为无法否定原假设。您没有足够的证据得出数据不服从正态分布的结论。

主要结果:P 值

在这些结果中,原假设声明数据服从正态分布。由于 p 值为 0.463(大于显著性水平 0.05),则所做的决定为无法否定原假设。您无法得出数据不服从正态分布的结论。

步骤 2:对正态分布的拟合程度进行可视化处理

为了可视化正态分布的拟合,请检查概率图并评估数据点与拟合的分布线的服从程度。正常分布趋于紧密服从直线。偏斜数据将形成曲线。

右偏斜数据左偏斜数据

提示

在 Minitab 中,将鼠标指针移到拟合分布线上并按住将可看到百分位数和值的控制图。

在这个概率图中,数据沿着正态分布线构成的线条大致为直线。正态分布似乎能够很好地拟合数据。

这篇关于MiniTab的正态性检验结果的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588444

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File