MiniTab的正态性检验结果的分析

2024-01-09 21:12

本文主要是介绍MiniTab的正态性检验结果的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

正态性检验概述

可使用 正态性检验 确定数据是否不服从正态分布。

执行菜单:要执行正态性检验,请选择统计 > 基本统计 > 正态性检验。

正态性检验 的假设

对于正态性检验,进行如下假设。

  • H0:数据服从正态分布。
  • H1:数据不服从正态分布。

正态性检验 的数据注意事项

  1. 数据必须为数字:您必须拥有数字数据,如包装重量。
  2. 样本数据应当是随机选择的:在统计学中,随机样本用于对总体做出归纳,即推断。如果数据不是随机收集的,则结果可能无法代表总体。
  3. 样本数量应当大于 20:如果样本数量小于 20,则提供的功效可能不足,无法检测样本数据和正态分布之间的显著差异。但是,在使用很大的样本数量时要格外小心,因为它们可能会提供过大的功效。当检验功效太大时,样本数据和理论分布之间可能无意义的小差异似乎会非常显著。

正态性检验 的示例

一家加工食品生产公司的科研人员想评估本公司生产的瓶装酱料的脂肪百分比。宣传的百分比为 15%。科研人员测量了 20 个随机样本的脂肪百分比。

样本 ID    脂肪百分比
1    15.2
2    12.4
3    15.4
4    16.5
5    15.9
6    17.1
7    16.9
8    14.3
9    19.1
10    18.2
11    18.5
12    16.3
13    20.0
14    19.2
15    12.3
16    12.8
17    17.9
18    16.3
19    18.7
20    16.2

科研人员想在执行假设检验之前验证正态性假设。

  1. 把上述数据输入到Minitab的数据表中。
  2. 选择统计 > 基本统计 > 正态性检验。
  3. 在变量中,输入脂肪百分比。
  4. 单击确定。

选择特定正态性检验

选择一个正态性检验。Anderson-Darling 适用于大多数情况。

  • Anderson-Darling:对于检测数据分布尾部的非正态性而言,该检验通常比其他两种检验更有效。
  • Ryan-Joiner:对于检测非正态性而言,该检验与 Anderson-Darling 具有类似的功能。
  • Kolmogorov-Smirnov:该检验对于正态分布中的小偏差较不敏感。

指定 正态性检验 的百分位线

百分位线有两段与拟合分布线相交。共绘制两段,一段与数据刻度相交,另一段与百分比刻度相交。百分位线通常用于计算检验分数。例如,如果您想要知道第 95 个百分位的检验分数,则可以在 95% 处添加一条百分位线。Minitab 会计算相应的数据值。相反,如果您在数据值处添加一条百分位线,Minitab 会计算相应的百分比。

  • 无:不显示百分位线。
  • 在 Y 值:输入百分位线的 y 刻度值。输入介于 0 和 100 之间的值。

eg:第 95 个百分位:排在第 95 个百分位的员工的检验分数为 31.64。换句话说,有 95% 的员工的分数为 31.64 或更少。

  • 在数据值:输入百分位线的数据值。

eg:检验分数 27:检验分数 27 略高于第 70 个百分位,或者有略多于 70% 的员工的分数为 27 或更少。

 解释结果

主要输出包括 p 值和概率图。

数据点离拟合的正态分布线相对较近。p 值大于显著性水平 0.05。因此,科学家无法否定数据服从正态分布这一原假设。

步骤 1:确定数据是否不服从正态分布

要确定数据是否不服从正态分布,请将 p 值与显著性水平进行比较。通常,显著性水平(用 α 或 alpha 表示)为 0.05 即可。显著性水平 0.05 表示当数据实际上服从正态分布时,断定数据不服从正态分布的风险为 5%。

P 值 ≤ α:数据不服从正态分布(否定 H0)

如果 p 值小于或等于显著性水平,则决策为否定原假设并得出数据不服从正态分布的结论。

P 值 > α:您无法得出数据不服从正态分布的结论(无法否定 H0)

如果 p 值大于显著性水平,则决策为无法否定原假设。您没有足够的证据得出数据不服从正态分布的结论。

主要结果:P 值

在这些结果中,原假设声明数据服从正态分布。由于 p 值为 0.463(大于显著性水平 0.05),则所做的决定为无法否定原假设。您无法得出数据不服从正态分布的结论。

步骤 2:对正态分布的拟合程度进行可视化处理

为了可视化正态分布的拟合,请检查概率图并评估数据点与拟合的分布线的服从程度。正常分布趋于紧密服从直线。偏斜数据将形成曲线。

右偏斜数据左偏斜数据

提示

在 Minitab 中,将鼠标指针移到拟合分布线上并按住将可看到百分位数和值的控制图。

在这个概率图中,数据沿着正态分布线构成的线条大致为直线。正态分布似乎能够很好地拟合数据。

这篇关于MiniTab的正态性检验结果的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588444

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1