第64课:SparkSQL下Parquet的数据切分和压缩内幕详解学习笔记

2024-01-09 19:08

本文主要是介绍第64课:SparkSQL下Parquet的数据切分和压缩内幕详解学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第64课:SparkSQLParquet的数据切分和压缩内幕详解学习笔记

本期内容:

1  SparkSQLParquet数据切分

2  SparkSQL下的Parquet数据压缩

 

Spark官网上的SparkSQL操作Parquet的实例进行讲解:

Schema Merging

Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution. Users can start with a simple schema, and gradually add more columns to the schema as needed. In this way, users may end up with multiple Parquet files with different but mutually compatible schemas. The Parquet data source is now able to automatically detect this case and merge schemas of all these files.

 

Since schema merging is a relatively expensive operation, and is not a necessity in most cases, we turned it off by default starting from 1.5.0. You may enable it by

 

setting data source option mergeSchema to true when reading Parquet files (as shown in the examples below), or

setting the global SQL option spark.sql.parquet.mergeSchema to true.

// sqlContext from the previous example is used in this example.// This is used to implicitly convert an RDD to a DataFrame.

import sqlContext.implicits._

// Create a simple DataFrame, stored into a partition directory

val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")

df1.write.parquet("data/test_table/key=1")

// Create another DataFrame in a new partition directory,// adding a new column and dropping an existing column

val df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")

df2.write.parquet("data/test_table/key=2")

// Read the partitioned table

val df3 = sqlContext.read.option("mergeSchema", "true").parquet("data/test_table")

df3.printSchema()

// The final schema consists of all 3 columns in the Parquet files together// with the partitioning column appeared in the partition directory paths.// root// |-- single: int (nullable = true)// |-- double: int (nullable = true)// |-- triple: int (nullable = true)// |-- key : int (nullable = true)

 

 

实际运行结果:

scala> val df1 = sc.makeRDD(1 to 5).map(i => (i,i * 2)).toDF("single","double")

df1: org.apache.spark.sql.DataFrame = [single: int, double: int]

 

scala> df1.write.parquet("data/text_table/key=1")

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition

16/04/02 04:27:07 INFO parquet.ParquetRelation: Using default output committer for Parquet: org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:27:07 INFO datasources.DefaultWriterContainer: Using user defined output committer class org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:27:09 INFO spark.SparkContext: Starting job: parquet at <console>:33

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Got job 0 (parquet at <console>:33) with 3 output partitions

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (parquet at <console>:33)

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[3] at parquet at <console>:33), which has no missing parents

16/04/02 04:27:12 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 68.0 KB, free 68.0 KB)

16/04/02 04:27:12 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 24.6 KB, free 92.5 KB)

16/04/02 04:27:12 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.1.121:56069 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:27:12 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006

16/04/02 04:27:12 INFO scheduler.DAGScheduler: Submitting 3 missing tasks from ResultStage 0 (MapPartitionsRDD[3] at parquet at <console>:33)

16/04/02 04:27:12 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 3 tasks

16/04/02 04:27:13 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, slq1, partition 0,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:27:13 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, slq2, partition 1,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:27:13 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2, slq3, partition 2,PROCESS_LOCAL, 2135 bytes)

16/04/02 04:27:17 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on slq2:44836 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:27:17 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on slq3:53765 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:27:18 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on slq1:44043 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:28:13 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 60174 ms on slq3 (1/3)

16/04/02 04:28:16 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 62700 ms on slq2 (2/3)

16/04/02 04:28:27 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 74088 ms on slq1 (3/3)

16/04/02 04:28:27 INFO scheduler.DAGScheduler: ResultStage 0 (parquet at <console>:33) finished in 74.105 s

16/04/02 04:28:27 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool

16/04/02 04:28:27 INFO scheduler.DAGScheduler: Job 0 finished: parquet at <console>:33, took 78.540234 s

16/04/02 04:28:29 INFO hadoop.ParquetFileReader: Initiating action with parallelism: 5

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

16/04/02 04:28:35 INFO datasources.DefaultWriterContainer: Job job_201604020427_0000 committed.

16/04/02 04:28:36 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=1 on driver

16/04/02 04:28:36 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=1 on driver

 

scala> 16/04/02 04:39:10 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on slq2:44836 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:10 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on 192.168.1.121:56069 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:11 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on slq3:53765 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:11 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on slq1:44043 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:11 INFO spark.ContextCleaner: Cleaned accumulator 3

16/04/02 04:39:11 INFO spark.ContextCleaner: Cleaned accumulator 2

 

 

scala> val df2 = sc.makeRDD(6 to 10).map(i => (i,i * 3)).toDF("single","triple")

df2: org.apache.spark.sql.DataFrame = [single: int, triple: int]

 

scala> df2.write.parquet("data/text_table/key=2")

16/04/02 04:56:13 INFO parquet.ParquetRelation: Using default output committer for Parquet: org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:56:13 INFO datasources.DefaultWriterContainer: Using user defined output committer class org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:56:14 INFO spark.SparkContext: Starting job: parquet at <console>:33

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Got job 1 (parquet at <console>:33) with 3 output partitions

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (parquet at <console>:33)

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[14] at parquet at <console>:33), which has no missing parents

16/04/02 04:56:14 INFO storage.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 68.0 KB, free 68.0 KB)

16/04/02 04:56:14 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 24.6 KB, free 92.5 KB)

16/04/02 04:56:14 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.1.121:56069 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:14 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Submitting 3 missing tasks from ResultStage 1 (MapPartitionsRDD[14] at parquet at <console>:33)

16/04/02 04:56:14 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 3 tasks

16/04/02 04:56:14 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 3, slq1, partition 0,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:56:14 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 1.0 (TID 4, slq2, partition 1,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:56:14 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 1.0 (TID 5, slq3, partition 2,PROCESS_LOCAL, 2135 bytes)

16/04/02 04:56:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on slq3:53765 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on slq2:44836 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on slq1:44043 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:16 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 1.0 (TID 4) in 1472 ms on slq2 (1/3)

16/04/02 04:56:16 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 1.0 (TID 5) in 1486 ms on slq3 (2/3)

16/04/02 04:56:16 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 3) in 2093 ms on slq1 (3/3)

16/04/02 04:56:16 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool

16/04/02 04:56:16 INFO scheduler.DAGScheduler: ResultStage 1 (parquet at <console>:33) finished in 2.095 s

16/04/02 04:56:16 INFO scheduler.DAGScheduler: Job 1 finished: parquet at <console>:33, took 2.673089 s

16/04/02 04:56:17 INFO hadoop.ParquetFileReader: Initiating action with parallelism: 5

16/04/02 04:56:18 INFO datasources.DefaultWriterContainer: Job job_201604020456_0000 committed.

16/04/02 04:56:18 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=2 on driver

16/04/02 04:56:18 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=2 on driver

 

scala> val df3 = sqlContext.read.option("mergeSchema","true").parquet("data/text_table")

16/04/02 05:00:59 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table on driver

16/04/02 05:00:59 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=1 on driver

16/04/02 05:00:59 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=2 on driver

16/04/02 05:01:00 INFO spark.SparkContext: Starting job: parquet at <console>:28

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Got job 2 (parquet at <console>:28) with 3 output partitions

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Final stage: ResultStage 2 (parquet at <console>:28)

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Submitting ResultStage 2 (MapPartitionsRDD[17] at parquet at <console>:28), which has no missing parents

16/04/02 05:01:00 INFO storage.MemoryStore: Block broadcast_2 stored as values in memory (estimated size 61.7 KB, free 154.2 KB)

16/04/02 05:01:00 INFO storage.MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 21.0 KB, free 175.2 KB)

16/04/02 05:01:00 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.1.121:56069 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:00 INFO spark.SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1006

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Submitting 3 missing tasks from ResultStage 2 (MapPartitionsRDD[17] at parquet at <console>:28)

16/04/02 05:01:00 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 with 3 tasks

16/04/02 05:01:00 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 2.0 (TID 6, slq3, partition 0,PROCESS_LOCAL, 2524 bytes)

16/04/02 05:01:00 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 2.0 (TID 7, slq1, partition 1,PROCESS_LOCAL, 2524 bytes)

16/04/02 05:01:00 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 2.0 (TID 8, slq2, partition 2,PROCESS_LOCAL, 2469 bytes)

16/04/02 05:01:00 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on slq2:44836 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:00 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on slq3:53765 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:01 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on slq1:44043 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:02 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 2.0 (TID 6) in 1697 ms on slq3 (1/3)

16/04/02 05:01:02 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 2.0 (TID 8) in 2189 ms on slq2 (2/3)

16/04/02 05:01:05 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 2.0 (TID 7) in 4740 ms on slq1 (3/3)

16/04/02 05:01:05 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool

16/04/02 05:01:05 INFO scheduler.DAGScheduler: ResultStage 2 (parquet at <console>:28) finished in 4.804 s

16/04/02 05:01:05 INFO scheduler.DAGScheduler: Job 2 finished: parquet at <console>:28, took 5.169726 s

df3: org.apache.spark.sql.DataFrame = [single: int, double: int, triple: int, key: int]

 

scala> df3.printSchema()

root

 |-- single: integer (nullable = true)

 |-- double: integer (nullable = true)

 |-- triple: integer (nullable = true)

 |-- key: integer (nullable = true)

 

 

scala> df3.show()

16/04/02 05:03:35 INFO datasources.DataSourceStrategy: Selected 2 partitions out of 2, pruned 0.0% partitions.

16/04/02 05:03:36 INFO storage.MemoryStore: Block broadcast_3 stored as values in memory (estimated size 62.4 KB, free 237.6 KB)

16/04/02 05:03:36 INFO storage.MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 19.7 KB, free 257.3 KB)

16/04/02 05:03:36 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on 192.168.1.121:56069 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:36 INFO spark.SparkContext: Created broadcast 3 from show at <console>:31

16/04/02 05:03:38 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize

16/04/02 05:03:38 INFO parquet.ParquetRelation: Reading Parquet file(s) from hdfs://slq1:9000/user/richard/data/text_table/key=2/part-r-00000-2f220b3f-43a1-4093-ad51-1d3af7707ca8.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=2/part-r-00001-2f220b3f-43a1-4093-ad51-1d3af7707ca8.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=2/part-r-00002-2f220b3f-43a1-4093-ad51-1d3af7707ca8.gz.parquet

16/04/02 05:03:38 INFO parquet.ParquetRelation: Reading Parquet file(s) from hdfs://slq1:9000/user/richard/data/text_table/key=1/part-r-00000-f6a15341-401e-41b0-8f8a-acbf97ce42fb.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=1/part-r-00001-f6a15341-401e-41b0-8f8a-acbf97ce42fb.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=1/part-r-00002-f6a15341-401e-41b0-8f8a-acbf97ce42fb.gz.parquet

16/04/02 05:03:38 INFO spark.SparkContext: Starting job: show at <console>:31

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Got job 3 (show at <console>:31) with 1 output partitions

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Final stage: ResultStage 3 (show at <console>:31)

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Submitting ResultStage 3 (MapPartitionsRDD[24] at show at <console>:31), which has no missing parents

16/04/02 05:03:38 INFO storage.MemoryStore: Block broadcast_4 stored as values in memory (estimated size 7.1 KB, free 264.4 KB)

16/04/02 05:03:38 INFO storage.MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 3.9 KB, free 268.4 KB)

16/04/02 05:03:38 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on 192.168.1.121:56069 (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:03:38 INFO spark.SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:1006

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 3 (MapPartitionsRDD[24] at show at <console>:31)

16/04/02 05:03:38 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 with 1 tasks

16/04/02 05:03:39 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 3.0 (TID 9, slq1, partition 0,NODE_LOCAL, 2353 bytes)

16/04/02 05:03:39 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on slq1:44043 (size: 3.9 KB, free: 517.4 MB)

16/04/02 05:03:39 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on slq1:44043 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:44 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 3.0 (TID 9) in 5898 ms on slq1 (1/1)

16/04/02 05:03:44 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool

16/04/02 05:03:44 INFO scheduler.DAGScheduler: ResultStage 3 (show at <console>:31) finished in 5.901 s

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Job 3 finished: show at <console>:31, took 6.358506 s

16/04/02 05:03:44 INFO spark.SparkContext: Starting job: show at <console>:31

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Got job 4 (show at <console>:31) with 5 output partitions

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Final stage: ResultStage 4 (show at <console>:31)

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Submitting ResultStage 4 (MapPartitionsRDD[24] at show at <console>:31), which has no missing parents

16/04/02 05:03:45 INFO storage.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 7.1 KB, free 275.4 KB)

16/04/02 05:03:45 INFO storage.MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 3.9 KB, free 279.4 KB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on 192.168.1.121:56069 (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:03:45 INFO spark.SparkContext: Created broadcast 5 from broadcast at DAGScheduler.scala:1006

16/04/02 05:03:45 INFO scheduler.DAGScheduler: Submitting 5 missing tasks from ResultStage 4 (MapPartitionsRDD[24] at show at <console>:31)

16/04/02 05:03:45 INFO scheduler.TaskSchedulerImpl: Adding task set 4.0 with 5 tasks

16/04/02 05:03:45 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 4.0 (TID 10, slq3, partition 1,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:45 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 4.0 (TID 11, slq1, partition 2,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:45 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 4.0 (TID 12, slq2, partition 3,NODE_LOCAL, 2353 bytes)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on slq1:44043 (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on slq2:44836 (size: 3.9 KB, free: 517.4 MB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on slq3:53765 (size: 3.9 KB, free: 517.4 MB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on slq3:53765 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:46 INFO scheduler.TaskSetManager: Starting task 3.0 in stage 4.0 (TID 13, slq1, partition 4,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:46 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 4.0 (TID 11) in 1205 ms on slq1 (1/5)

16/04/02 05:03:47 INFO scheduler.TaskSetManager: Starting task 4.0 in stage 4.0 (TID 14, slq1, partition 5,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:47 INFO scheduler.TaskSetManager: Finished task 3.0 in stage 4.0 (TID 13) in 703 ms on slq1 (2/5)

16/04/02 05:03:47 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on slq2:44836 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:49 INFO scheduler.TaskSetManager: Finished task 4.0 in stage 4.0 (TID 14) in 2032 ms on slq1 (3/5)

16/04/02 05:03:52 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 4.0 (TID 10) in 7654 ms on slq3 (4/5)

16/04/02 05:03:54 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 4.0 (TID 12) in 9789 ms on slq2 (5/5)

16/04/02 05:03:54 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool

16/04/02 05:03:54 INFO scheduler.DAGScheduler: ResultStage 4 (show at <console>:31) finished in 9.805 s

16/04/02 05:03:54 INFO scheduler.DAGScheduler: Job 4 finished: show at <console>:31, took 9.980420 s

+------+------+------+---+

|single|double|triple|key|

+------+------+------+---+

|     6|  null|    18|  2|

|     7|  null|    21|  2|

|     8|  null|    24|  2|

|     9|  null|    27|  2|

|    10|  null|    30|  2|

|     1|     2|  null|  1|

|     2|     4|  null|  1|

|     3|     6|  null|  1|

|     4|     8|  null|  1|

|     5|    10|  null|  1|

+------+------+------+---+

 

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on 192.168.1.121:56069 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on slq1:44043 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on slq3:53765 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on slq2:44836 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO spark.ContextCleaner: Cleaned accumulator 8

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_4_piece0 on 192.168.1.121:56069 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_4_piece0 on slq1:44043 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO spark.ContextCleaner: Cleaned accumulator 7

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on 192.168.1.121:56069 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on slq3:53765 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on slq2:44836 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on slq1:44043 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on 192.168.1.121:56069 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on slq1:44043 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on slq3:53765 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on slq2:44836 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO spark.ContextCleaner: Cleaned accumulator 6

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on 192.168.1.121:56069 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on slq3:53765 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on slq2:44836 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on slq1:44043 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:13 INFO spark.ContextCleaner: Cleaned accumulator 5

16/04/02 05:09:13 INFO spark.ContextCleaner: Cleaned accumulator 4

 

 

 

实例中使用了df.write方法将DataFrame数据以parquet格式写入到HDFS上。

下面从源码的角度解读此实例:

DataFrame.scala类中,可以找到write方法:

/**
 * :: Experimental ::
 * Interface for saving the content of the
[[DataFrame]] out into external storage.
 *
 *
@group output
 *
@since 1.4.0
 */
@Experimental
def write: DataFrameWriter = new DataFrameWriter(this)

可以看出,DataFramewrite方法直接生成了一个DataFrameWriter实例。

DataFrameWriter类中可以找到parquet方法:

/**
 * Saves the content of the
[[DataFrame]] in Parquet format at the specified path.
 * This is equivalent to:
 *
{{{
 *   format("parquet").save(path)
 *
}}}
 *
 *
@since 1.4.0
 */
def parquet(path: String): Unit = format("parquet").save(path)

可以看出parquet方法只是format("parquet").save(path)方法的快捷方式。

format方法的源码如下:

/**
 * Specifies the underlying output data source. Built-in options include "parquet", "json", etc.
 *
 *
@since 1.4.0
 */
def format(source: String): DataFrameWriter = {
  this.source = source
  this
}

format方法只是返回“parquet”格式名称本身,然后进行save操作。

/**
 * Saves the content of the
[[DataFrame]] at the specified path.
 *
 *
@since 1.4.0
 */
def save(path: String): Unit = {
  this.extraOptions += ("path" -> path)
  save()
}

可以看出save操作中调用了extraOptions方法:

private var extraOptions = new scala.collection.mutable.HashMap[String, String]

可以看出extraOptions 是一个HashMap

save操作还调用了save()方法:

/**
 * Saves the content of the
[[DataFrame]] as the specified table.
 *
 *
@since 1.4.0
 */
def save(): Unit = {
  ResolvedDataSource(
    df.sqlContext,
    source,
    partitioningColumns.map(_.toArray).getOrElse(Array.empty[String]),
    mode,
    extraOptions.toMap,
    df)
}

save()方法主要就是调用ResolvedDataSource的apply方法:

/** Create a [[ResolvedDataSource]] for saving the content of the given DataFrame. */
  
def apply(
      sqlContext: SQLContext,  //对应save()方法中的df.sqlContext。
      provider: String,    //对应save()方法中的source,即“parquet”格式名称
      partitionColumns: Array[String],
      mode: SaveMode,
      options: Map[String, String],
      data: DataFrame): ResolvedDataSource = {
    if (data.schema.map(_.dataType).exists(_.isInstanceOf[CalendarIntervalType])) {
      throw new AnalysisException("Cannot save interval data type into external storage.")
    }
    val clazz: Class[_] = lookupDataSource(provider)
    val relation = clazz.newInstance() match {
      case dataSource: CreatableRelationProvider =>
        dataSource.createRelation(sqlContext, mode, options, data)
      case dataSource: HadoopFsRelationProvider =>
        // Don't glob path for the write path.  The contracts here are:
        //  1. Only one output path can be specified on the write path;
        //  2. Output path must be a legal HDFS style file system path;
        //  3. It's OK that the output path doesn't exist yet;
        
val caseInsensitiveOptions = new CaseInsensitiveMap(options)
        val outputPath = {
          val path = new Path(caseInsensitiveOptions("path"))
          val fs = path.getFileSystem(sqlContext.sparkContext.hadoopConfiguration)
          path.makeQualified(fs.getUri, fs.getWorkingDirectory)
        }

        val caseSensitive = sqlContext.conf.caseSensitiveAnalysis
        PartitioningUtils.validatePartitionColumnDataTypes(
          data.schema, partitionColumns, caseSensitive)

        val equality = columnNameEquality(caseSensitive)
        val dataSchema = StructType(
          data.schema.filterNot(f => partitionColumns.exists(equality(_, f.name))))
        val r = dataSource.createRelation(
          sqlContext,
          Array(outputPath.toString),
          Some(dataSchema.asNullable),
          Some(partitionColumnsSchema(data.schema, partitionColumns, caseSensitive)),
          caseInsensitiveOptions)

        // For partitioned relation r, r.schema's column ordering can be different from the column
        // ordering of data.logicalPlan (partition columns are all moved after data column).  This
        // will be adjusted within InsertIntoHadoopFsRelation.
        
sqlContext.executePlan(
          InsertIntoHadoopFsRelation(
            r,
            data.logicalPlan,
            mode)).toRdd
        
r
      case _ =>
        sys.error(s"${clazz.getCanonicalName} does not allow create table as select.")
    }
    ResolvedDataSource(clazz, relation)
  }
}

 

save()方法中的source的源码为:

private var source: String = df.sqlContext.conf.defaultDataSourceName

SQLContext的conf中的defaultDataSourceName方法为:

private[spark] def defaultDataSourceName: String = getConf(DEFAULT_DATA_SOURCE_NAME)

在SQLConf.scala中可以看到:
// This is used to set the default data source
val DEFAULT_DATA_SOURCE_NAME = stringConf("spark.sql.sources.default",
  defaultValue = Some("org.apache.spark.sql.parquet"),
  doc = "The default data source to use in input/output.")

即默认数据源是parquet

 

parquet.block.size基本上是压缩后的大小。读取数据时可能数据还在encoding

 

page内部有repetitionLevel DefinitionLevel data

Java的二进制就是字节流

Parquet非常耗内存,采用高压缩比率,采用很多Cache

解压后的大小是解压前的5-10倍。

BlockSize采用默认256MB

 

 

 

 

 

以上内容是王家林老师DT大数据梦工厂《 IMF传奇行动》第64课的学习笔记。
王家林老师是Spark、Flink、Docker、Android技术中国区布道师。Spark亚太研究院院长和首席专家,DT大数据梦工厂创始人,Android软硬整合源码级专家,英语发音魔术师,健身狂热爱好者。

微信公众账号:DT_Spark

联系邮箱18610086859@126.com 

电话:18610086859

QQ:1740415547

微信号:18610086859  

新浪微博:ilovepains


 

 

这篇关于第64课:SparkSQL下Parquet的数据切分和压缩内幕详解学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588125

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本