【yolov5系列】将yolov5s模型部署到SigmaStar的9383芯片上

2024-01-09 13:59

本文主要是介绍【yolov5系列】将yolov5s模型部署到SigmaStar的9383芯片上,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今年年初,接触了星宸科技(sigmastar)的芯片9383,将深度学习模型进行部署,使用sigmastar的深度学习加速硬件IPU进行模型推理。这里简单记录下sigmastar相关内容。
补充说明,之前使用的是瑞芯微的芯片,他们将芯片的SDK等信息已经上传至github。sigmastar也已经上传,但目前在个人github账号下,具体的还是由供应商提供。

1 工具包获取

从别人手里获取到的包如下(只保留需要的内容)。
在这里插入图片描述
其中
IPU_SDK_Release:python上的转换模型的相关工程
dla_detect_yolo_postprocess:板端推理的C++的相关文件
在文件【IPU_SDK_Release/Sigmastar_SDK_vS3.0.2/SGS_IPU_SDK_vS3.0.2/doc/SDK_Doc_Release/index.html】中说明了sigmastar模型转换的环境的安装、已经相关转换流程和注意事项等。这里记录下如何转换onnx的流程,详细使用还是要看index.html的说明文档。

2 操作前需知


2.1 SDK介绍

SigmaStar模型为sim,全称Sigmastar IPU Model,查看工具使用 SGS_IPU_SDK/Netron/Netron Setup 5.3.5.exe 安装后打开。
本文中DLA与IPU指代同一个部件。即Sigmastar的深度学习加速硬件

SigmaStar DLA SDK主要包含以下工具:

  1. Convert Tool:
    将TensorFlow、Keras、Caffe和ONNX框架的网络模型转换为 SigmaStar浮点网络模型(SGS Float file)
    Convert Tool能根据硬件特性,将原网络框架的算子转换为SigmaStar DLA客制化算子,对网络模型无损优化;
  2. Calibrator:
    将SigmaStar浮点网络模型转化为 SigmaStar定点网络模型(SGS Fixed file)
    Calibrator统计FeatureMap的取值,将SGS Float file量化为8bit / 16bit定点模型;
  3. Compiler:
    将SigmaStar定点网络模型转化为SigmaStar离线网络模型(SGS Offline cmd file)
    Compiler将定点网络模型文件转化为离线指令文件,后缀【.img】能够直接部署在SigmaStar的硬件产品上;
  4. Simulator:
    Simulator提供模拟SigmaStar硬件的PC端模拟器,能够完整运行SGS Float file / SGS Fixed file / SGS Offline cmd file,加快网络网络模型的调试部署;
  5. SGS Netron:
    SGS Netron不仅能够查看SigmaStar的【SGS Float file / SGS Fixed file】模型,还能够查看原生框架的模型;
    在这里插入图片描述

2.2 算子支持

在文档中陈列了caffe/TensorFlow/Onnx的支持的算子,以及模型性能优化规则。可关注了解下。
针对yolov5中的算子,sigmastar全部支持,也就是转换毫无波折。(yolov8需要修改些操作)
在这里插入图片描述

3 环境搭建与模型转换


3.1 环境搭建

电脑系统:ubuntu18。
在文档中,展示了环境的系统依赖。在自己电脑使用比较久了,没有特意安装这些。如果是新使用的电脑,将文档中的系统依赖环境安装一遍。我这里直接安装python的所需环境。
首先进入目录【IPU_SDK_Release/Sigmastar_SDK_vS3.0.2/SGS_IPU_SDK_vS3.0.2】,执行安装命令:
conda create -n SIM9383 python=3.7
conda activate SIM9383
pip3 install -r Scripts/calibrator/setup/requirements.txt –i https://pypi.tuna.tsinghua.edu.cn/simple


3.2 转换模型的准备文件

在文件DirectoryDescription.txt中,可以看到该工程文件的整体结构布局。

我这里是coco数据集训练的yolov5s模型举例,所以在路径【SGS_IPU_SDK_vS3.0.2】下创建文件夹【ONNX_convert/demo/】,将转换所需的文件放置该路径下。(在路径ONNX_conver下,可存放多个项目的转换所需文件。这样放置的目的是为了简洁方便。)

  1. 文件的copy与创建
    mkdir -p ONNX_convert/demo
    mkdir -p ONNX_convert/demo/dataset
    touch ONNX_convert/demo/input_config.ini
    touch ONNX_convert/demo/preprocess.py
    然后将coco的yolov5s.onnx模型和测试图片bus.jpg放置该路径【ONNX_convert/demo】
    将量化图片放置【ONNX_convert/demo/dataset】,这里使用bus.jpg测试转换流程。

    • dataset:存放量化所需图片,训练集取有代表性的100张
    • bus.jpg:测试图片
    • yolov5s_rk.onnx:训练好的模型。官方提供的yolov5s.onnx无法转通,但使用源码自己训练的yolov5.onnx可以转通(这个问题不想做深究)。为了通用例子举例,使用了之前rknn提供的yolov5.onnx举例说明
    • input_config.ini:模型转换所需的配置文件
    • preprocess.py:转定点模型时,所需的图片预处理文件

    tree ONNX_convert/demo
    在这里插入图片描述

  2. 创建文件的内容。

    • input_config.ini:用于指定input tensor的配置信息文。
      在这里插入图片描述
      [INPUT_CONFIG]
      inputs='images'  
      training_input_formats=RGB
      input_formats=RGB
      quantizations=TRUE
      mean=0.0:0.0:0.0
      std_value=255.0:255.0:255.0[OUTPUT_CONFIG]
      outputs='output,327,328'
      output_layouts='NHWC,NHWC,NHWC'
      dequantizations=TRUE,TRUE,TRUE[CONV_CONFIG]
      input_format=ALL_UINT8
      
    • preprocess.py:用于指定input tensor的配置信息文。
      一般的,这个脚本里面注意两点:图片的尺寸问题、均值方差的通道(这里的是BGR,input_config.ini 中的是RGB,当均值方差三通道数值不一致时,一定注意这里的设置)
      这里对文档中提供的处理脚本做了简化,如果实际使用中有与yolov5的图片为其他格式,可仔细参考原文档
      # -*- coding: utf-8 -*-import cv2
      import numpy as npdef get_image(img_path,  norm=True, rgb=True, nchw=False):img = cv2.imread(img_path)if img is None:raise FileNotFoundError('No such image: {}'.format(img_path))img_float = img.astype('float32')img_norm = img_float## 如果提供的图片与模型输入图片大小不一致,这里需要设置大小并进行resize# resizeH, resizeW, resizeC = 640, 640, 3# img_norm = cv2.resize(img_float, (resizeW, resizeH), interpolation=cv2.INTER_LINEAR)## 注意这里的顺序和input_config.ini 中的mean/std的顺序问题mean_BGR=[0.0, 0.0, 0.0]  std_BGR=[255.0, 255.0, 255.0]if norm:img_norm = (img - mean_BGR) / std_BGRimg_norm = img_norm.astype('float32')else:img_norm = np.round(img).astype('uint8')if rgb:img_norm = cv2.cvtColor(img_norm, cv2.COLOR_BGR2RGB)if nchw:# NCHWimg_norm = np.transpose(img_norm, axes=(2, 0, 1))return np.expand_dims(img_norm, 0)def image_preprocess(img_path, norm=True):return get_image(img_path, norm=norm)
      
  3. 开始模型转换
    a) 前三个阶段:模型转换如第一节描述,【浮点模型 (无损)】–> 【定点模型 (量化)】–> 【离线模型 (板端推理)】。
    b)第四个阶段:转换后模型的仿真。这里只测试了最终的里面模型的推理效果。在第四个阶段,针对自己以上的设置,重新写了推理后的后处理(使用的rknn的后处理,也是为了两者的结果的对比)
    c)说明:这里为为了不同的任务工程的模型方便转换,将4个阶段的模型转换写到一个bash脚本中(【SGS_IPU_SDK_vS3.0.2/export_SIM.sh】)。在自己新的工程第一次转换时,以下4个过程分别注释掉其他三个,运行看是否正常跑通,异常时这样方便定位是那个阶段存在问题。

    # ## demo
    inputpath='./ONNX_convert/demo/'
    exportpath='./ONNX_convert/SIM_demo/'  ##导出模型的路径
    ONNXname='yolov5s_rk'   ## onnx模型名字
    SIMname='yolov5_demo'  ## 导出模型的命名
    input_size='1,3,640,640'    ## 模型的输入尺寸
    dataset='dataset'                  ## 量化数据集的路径
    test_image='bus.jpg'          ## 测试图片mkdir ${exportpath}## step1: onnx->sim,将onnx模型转换为SGS浮点网络模型
    python ./Scripts/ConvertTool/ConvertTool.py onnx \--input_shapes ${input_size} \--input_config ${inputpath}input_config.ini \--model_file   ${inputpath}${ONNXname}.onnx \--output_file  ${exportpath}${SIMname}.sim	# step2: calibrator,将SigmaStar浮点网络模型转换为SigmaStar定点网络模型
    python ./Scripts/calibrator/calibrator.py \--input_config ${inputpath}input_config.ini \--num_process 8 \-n ${inputpath}preprocess.py \-i ${inputpath}${dataset} \-m ${exportpath}${SIMname}.sim # step3:sim->img,将SigmaStar定点网络模型转换为SigmaStar离线网络模型
    python ./Scripts/calibrator/compiler.py \-m ${exportpath}${SIMname}_fixed.sim## step4:pc仿真
    python ./Scripts/calibrator/simulator.py \-c Detection \-t Offline \-n ${inputpath}preprocess.py \-i ${inputpath}${test_image} \-m ${exportpath}${SIMname}_fixed.sim_sgsimg.img \--draw_result ${exportpath}
    

    执行后的推理结果可视化在路径【./ONNX_convert/SIM_demo/】:
    在这里插入图片描述

  4. 自己添加的后处理
    源代码跑通 且不需要和 RK系列芯片的模型输出做对比,就不需要统一两个芯片的后处理,就不需要接下来的代码的修改。但要对比,需对齐后处理代码,具体的细节为如下。
    创建文件 Scripts/calibrator/utils/post_normal.py,内容为:

    import numpy as np
    import cv2BOX_THRESH = 0.3
    NMS_THRESH = 0.5
    CLASSES = None
    IMG_SIZE = Nonedef sigmoid(x):return 1 / (1 + np.exp(-x))def xywh2xyxy(x):# Convert [x, y, w, h] to [x1, y1, x2, y2]y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn ydef process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = sigmoid(input[..., 4])box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = sigmoid(input[..., 5:])box_xy = sigmoid(input[..., :2])*2 - 0.5col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy *= int(IMG_SIZE/grid_h)box_wh = pow(sigmoid(input[..., 2:4])*2, 2)box_wh = box_wh * anchorsbox = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!# Argumentsboxes: ndarray, boxes of objects.box_confidences: ndarray, confidences of objects.box_class_probs: ndarray, class_probs of objects.# Returnsboxes: ndarray, filtered boxes.classes: ndarray, classes for boxes.scores: ndarray, scores for boxes."""box_classes = np.argmax(box_class_probs, axis=-1)box_class_scores = np.max(box_class_probs, axis=-1)pos = np.where(box_confidences[...,0] >= BOX_THRESH)boxes = boxes[pos]classes = box_classes[pos]scores = box_class_scores[pos]return boxes, classes, scoresdef nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Argumentsboxes: ndarray, boxes of objects.scores: ndarray, scores of objects.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]     #取用第一列y = boxes[:, 1]w = boxes[:, 2] - boxes[:, 0]h = boxes[:, 3] - boxes[:, 1]areas = w * horder = scores.argsort()[::-1]  #scores.argsort()从小到大的索引值,再加>		[::-1]就变成从大到小的索引keep = []while order.size > 0:i = order[0]    #scores的每个索引值,选取最大的keep.append(i)xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= NMS_THRESH)[0]   #将不满足mns过滤的框重新进行过滤,直到没有候选框order = order[inds + 1]keep = np.array(keep)return keepdef yolov5_post_process(input_data):masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],[59, 119], [116, 90], [156, 198], [373, 326]]boxes, classes, scores = [], [], []for input,mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)boxes = np.concatenate(boxes)boxes = xywh2xyxy(boxes)classes = np.concatenate(classes)scores = np.concatenate(scores)nboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])if not nclasses and not nscores:return None, None, Noneboxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)return boxes, classes, scoresdef draw(image, boxes, scores, classes):"""Draw the boxes on the image.# Argument:image: original image.boxes: ndarray, boxes of objects.classes: ndarray, classes of objects.scores: ndarray, scores of objects.all_classes: all classes name."""for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxprint('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))top = int(top)left = int(left)right = int(right)bottom = int(bottom)cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, >		cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)
    


    修改文件 Scripts/calibrator/utils/misc.py,需要添加内容为(其他的代码不用动):

    ...
    from utils import post_normal as P
    ...def demo_define(img, outputs, img_save_path):input0_data = outputs[0]input1_data = outputs[1]input2_data = outputs[2]print("直接输出的维度为=============")print(input0_data.shape)print(input1_data.shape)print(input2_data.shape)sign = "NHWC"# sign = "NCHW"if sign == "NHWC":input0_data = np.transpose(input0_data, (0, 3, 1, 2))input1_data = np.transpose(input1_data, (0, 3, 1, 2))input2_data = np.transpose(input2_data, (0, 3, 1, 2))input0_data = input0_data.reshape([3,-1]+list(input0_data.shape[-2:])) input1_data = input1_data.reshape([3,-1]+list(input1_data.shape[-2:])) input2_data = input2_data.reshape([3,-1]+list(input2_data.shape[-2:]))input_data = list()input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))              input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))             input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))print(input_data[0].shape)print(input_data[1].shape)print(input_data[2].shape) ## 此时维度为 (H,W,3,C)P.IMG_SIZE = 640boxes, classes, scores = P.yolov5_post_process(input_data)if boxes is not None:P.CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush'] P.draw(img, boxes, scores, classes)## show output# cv2.imshow("post process result", img)# cv2.waitKey(0)# cv2.destroyAllWindows()cv2.imwrite(img_save_path, img)...
    def postDetection(model_path, img_path, result_list, out_details, draw_result, show_log=False):im = img_path if not isinstance(img_path, list) else img_path[0]print("start post==================================")## 接入RK的后出理代码img_tmp = cv2.imread(im)img_save_path = os.path.join(draw_result, os.path.basename(img_path))demo_define(img_tmp, result_list, img_save_path)exit()
    ...
    

这篇关于【yolov5系列】将yolov5s模型部署到SigmaStar的9383芯片上的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/587353

相关文章

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

MongoDB搭建过程及单机版部署方法

《MongoDB搭建过程及单机版部署方法》MongoDB是一个灵活、高性能的NoSQL数据库,特别适合快速开发和大规模分布式系统,本文给大家介绍MongoDB搭建过程及单机版部署方法,感兴趣的朋友跟随... 目录前言1️⃣ 核心特点1、文档存储2、无模式(Schema-less)3、高性能4、水平扩展(Sh

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Docker + Redis 部署集群的实现步骤

《Docker+Redis部署集群的实现步骤》本文详细介绍了在三台服务器上部署高可用Redis集群的完整流程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录一、环境准备1. 服务器规划(3 台服务器)2. 防火墙配置(三台服务器均执行)3. 安装 docke

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4