教你使用 MATLAB 绘制散点密度图(二维核密度)

2024-01-08 13:38

本文主要是介绍教你使用 MATLAB 绘制散点密度图(二维核密度),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

效果:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
原理也很简单,通过matlab自带的ksdensity获得网格每一点密度,通过密度拟合曲面,再计算每个数据点对应的概率,并将概率映射到颜色即可
为了怕大家找不到函数这次工具函数放到最前面

1工具函数完整代码

function [CData,h,XMesh,YMesh,ZMesh,colorList]=density2C(X,Y,XList,YList,colorList)
[XMesh,YMesh]=meshgrid(XList,YList);
XYi=[XMesh(:) YMesh(:)];
F=ksdensity([X,Y],XYi);
ZMesh=zeros(size(XMesh));
ZMesh(1:length(F))=F;h=interp2(XMesh,YMesh,ZMesh,X,Y);
if nargin<5
colorList=[0.2700         0    0.33000.2700    0.2300    0.51000.1900    0.4100    0.56000.1200    0.5600    0.55000.2100    0.7200    0.47000.5600    0.8400    0.27000.9900    0.9100    0.1300];
end
colorFunc=colorFuncFactory(colorList);
CData=colorFunc((h-min(h))./(max(h)-min(h)));
colorList=colorFunc(linspace(0,1,100)');function colorFunc=colorFuncFactory(colorList)
x=(0:size(colorList,1)-1)./(size(colorList,1)-1);
y1=colorList(:,1);y2=colorList(:,2);y3=colorList(:,3);
colorFunc=@(X)[interp1(x,y1,X,'pchip'),interp1(x,y2,X,'pchip'),interp1(x,y3,X,'pchip')];
end
end

2参数说明

输入:

  • X,Y 散点坐标
  • XList,YList 用来构造密度曲面网格的序列,其实就是把XLim,YLim分成小份,例如XList=0:0.1:10
  • colorList 颜色表mx3数组,用来构造将高度映射到颜色函数的数据表

输出:

  • CData各个点对应颜色
  • h 各个点对应核密度
  • XMesh,YMesh,ZMesh 核密度曲面数据
  • colorList 插值后更细密的颜色表

3使用方式

假如编写了如下程序:

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];
scatter(PntSet(:,1),PntSet(:,2),'filled');

结果:
在这里插入图片描述

3.1散点赋色

将上面那段代码改写

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);

在这里插入图片描述

3.2等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)

在这里插入图片描述

3.3带直方图的散点图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];colorList=[0.9400    0.9700    0.96000.8900    0.9300    0.92000.8200    0.9100    0.88000.6900    0.8500    0.77000.5900    0.7800    0.69000.5500    0.7500    0.65000.4500    0.6500    0.56000.4000    0.5800    0.49000.3500    0.5100    0.42000.2500    0.3600    0.31000.1300    0.1700    0.1400];
CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15,colorList);set(gcf,'Color',[1 1 1]);% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
scatter(ax1,PntSet(:,1),PntSet(:,2),'filled','CData',CData);
ax1.Position=[0.1,0.1,0.6,0.6];% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
histogram(ax2,PntSet(:,1),'FaceColor',[0.78 0.88 0.82],...'EdgeColor','none','FaceAlpha',0.7)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
histogram(ax3,PntSet(:,2),'FaceColor',[0.78 0.88 0.82],...'EdgeColor','none','FaceAlpha',0.7,'Orientation','horizontal')
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;

在这里插入图片描述

3.4带直方图的等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];
colorList=[0.9300    0.9500    0.97000.7900    0.8400    0.91000.6500    0.7300    0.85000.5100    0.6200    0.79000.3700    0.5100    0.73000.2700    0.4100    0.63000.2100    0.3200    0.49000.1500    0.2200    0.35000.0900    0.1300    0.21000.0300    0.0400    0.0700];
[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:13,-2:0.1:13,colorList);set(gcf,'Color',[1 1 1]);
% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10,'EdgeColor','none')
ax1.Position=[0.1,0.1,0.6,0.6];
ax1.TickDir='out';% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
[f,xi]=ksdensity(PntSet(:,1));
fill([xi,xi(1)],[f,0],[0.34 0.47 0.71],'FaceAlpha',...0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
[f,yi]=ksdensity(PntSet(:,2));
fill([f,0],[yi,yi(1)],[0.34 0.47 0.71],'FaceAlpha',...0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;

在这里插入图片描述

4使用方式扩展–与ggplot修饰器联动

ggplot风格修饰器:(点击图片跳转链接)


示例1

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];ax=gca;
ax.XLim=[-1 13];
ax.YLim=[-1 13];
ax=ggplotAxes2D(ax);CData=density2C(PntSet(:,1),PntSet(:,2),0:0.1:15,0:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);

是不是瞬间有那味了:
在这里插入图片描述
示例2

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];ax=gca;
ax.XLim=[-3 13];
ax.YLim=[-3 13];
ax=ggplotAxes2D(ax);[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)

在这里插入图片描述

这篇关于教你使用 MATLAB 绘制散点密度图(二维核密度)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583628

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(