【视频算法解析二】I3D

2024-01-08 12:38
文章标签 算法 视频 解析 i3d

本文主要是介绍【视频算法解析二】I3D,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[视频算法解析一] C3D算法

[视频算法解析二] I3D算法

[视频算法解析三] ECO算法

paper原文是“Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”,链接如:https://arxiv.org/abs/1705.07750。

Introduction

网络是在Kinetics数据集上提出得,Human Action Video dataset,里面有400个 action classes,平均每个有400clips。

本文提出了一个Two-Stream Inflated 3D ConvNet,由2D卷积得那些网络在ImageNet上进行分类预训练,用在其他不同的task上,想到能不能在video上也采用这种方案,于是作者在Kinetics数据集上进行预训练,之后在HMDB-51 and UCF-101上进行fine-tuning。这种方法对于实验效果有提升,但每个model效果不同。

Action Classification Architectures

本章节把提出的I3D和之前别人得四种方法(都预训练了,除了C3D)进行比较。由于之前得网络参数原因以及缺少数据,所以他们的网络都很浅。

ConvNet+LSTM
由于2D分类网络的效果好,想到把其用在video上,但是只用那些2D卷积网络不能捕捉时空方面的信息,例如门从开到关。这里采用Inception-V1+LSTM。downsample了视频帧,从25/s到5/s。

3D卷积

3D卷积保留了时空特征,但是参数量很大,难以训练。为了比较,作者将网络缩小了些,这样才能在k40上训练。
 

Two-Stream Networks
单帧图像没有捕捉到low-level motion,参考Simonyan and Zisserman的网络输入单个图像,以及这个图像的optical flow。测试的时候是输入很多个单张图,最后结果取平均,结果较好而且训练和测试方便。

3D-fused Two-stream

最后一层前,将特征送到3D卷积里去。输入网络的是相隔10帧采样的5个连续RGB帧。

Two-Stream Inflated 3D ConvNets
后面实验章节会显示optical-flow stream对于3D卷积在这上面的提升。这里用的3D卷积是简单的从2D卷积扩展来的,增加了一维时间维度,将N*N的卷积核变为N*N*N的。

从2D卷积的在Imagenet上预训练迁移到3D卷积中,首先把图片复制N次,这样一个图片就成为一个视频,就可以在其上面对3D卷积和pooling进行学习了。时间核上用几维的,就复制几次就好了。

使感受野在时间,空间,网络深度上增长   对于网络来说,pooling和conv的strdie参数设定很重要,影响了特征的感受野。对于水平和垂直方向的pooling kernels and strides应该一致,对于时间维度的来说,合并的过快会导致不同对象的边缘融合,合并的过慢就丢失了场景动态信息。对于视频每秒取25帧,网络结构如下图。

双流网络 另一边是输入optical flow,两个网络分开训练,最后inference的时候取平均结果。

 

这篇关于【视频算法解析二】I3D的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583482

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?