CLIP算法的Loss详解 和 交叉熵CrossEntropy实现

2024-01-08 07:40

本文主要是介绍CLIP算法的Loss详解 和 交叉熵CrossEntropy实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CLIP:Contrastive Language–Image Pre-training(可对比语言-图像预训练算法)是OpenAI提出的多模态预训练的算法,在各种各样的**样本对(图像、文本)**上训练的神经网络。

具体参考:CLIP、OpenCLIP

image-20220601180224080

其中,流程:

image-20220601180639145

loss_iloss_t的具体源码如下,参考 model.py:

    def forward(self, image, text):image_features = self.encode_image(image)text_features = self.encode_text(text)# normalized featuresimage_features = image_features / image_features.norm(dim=1, keepdim=True)text_features = text_features / text_features.norm(dim=1, keepdim=True)# cosine similarity as logitslogit_scale = self.logit_scale.exp()logits_per_image = logit_scale * image_features @ text_features.t()logits_per_text = logits_per_image.t()# shape = [global_batch_size, global_batch_size]return logits_per_image, logits_per_text

其中,labels是torch.arange(batch_size, device=device).long(),参考train.py,具体如下

        with torch.no_grad():for i, batch in enumerate(dataloader):images, texts = batchimages = images.to(device=device, non_blocking=True)texts = texts.to(device=device, non_blocking=True)with autocast():image_features, text_features, logit_scale = model(images, texts)# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly# however, system RAM is easily exceeded and compute time becomes problematicall_image_features.append(image_features.cpu())all_text_features.append(text_features.cpu())logit_scale = logit_scale.mean()logits_per_image = logit_scale * image_features @ text_features.t()logits_per_text = logits_per_image.t()batch_size = images.shape[0]labels = torch.arange(batch_size, device=device).long()total_loss = (F.cross_entropy(logits_per_image, labels) +F.cross_entropy(logits_per_text, labels)) / 2

交叉熵函数:y就是label,x_softmax[i][y[i]],表示在x_softmax中筛选第i个sample的第y[i]个值,作为log的输入,全部log负向求和,再求均值。

  • y所对应的就是CLIP的np.arange(n),也就是依次是第0个位置~第n-1个位置,计算log。
# 定义softmax函数
def softmax(x):return np.exp(x) / np.sum(np.exp(x))# 利用numpy计算
def cross_entropy_np(x, y):x_softmax = [softmax(x[i]) for i in range(len(x))]x_log = [np.log(x_softmax[i][y[i]]) for i in range(len(y))]loss = - np.sum(x_log) / len(y)return loss# 测试逻辑
x = [[1.9269, 1.4873, 0.9007, -2.1055]]
y = [[2]]
v1 = cross_entropy_np(x, y)
print(f"v1: {v1}")x = torch.unsqueeze(torch.Tensor(x), dim=0)
x = x.transpose(1, 2)  # CrossEntropy输入期望: Class放在第2维,Batch放在第1维y = torch.Tensor(y)
y = y.to(torch.long)  # label的类型为longv2 = F.cross_entropy(x, y, reduction="none")
print(f"v2: {v2}")

输出:

v1: 1.729491540989093
v2: tensor([[1.7295]])

参考:

  • arxiv文章下载很慢怎么办?
  • CLIP-对比图文多模态预训练的读后感
  • CrossEntropy的numpy实现和Pytorch调用

这篇关于CLIP算法的Loss详解 和 交叉熵CrossEntropy实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582742

相关文章

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (