【动态规划】C++算法312 戳气球

2024-01-08 07:36
文章标签 算法 动态 规划 c++ 气球 312

本文主要是介绍【动态规划】C++算法312 戳气球,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【字符串】扰乱字符串

本文涉及的基础知识点

动态规划

LeetCode312 戳气球

有 n 个气球,编号为0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。
现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。
求所能获得硬币的最大数量。
示例 1:
输入:nums = [3,1,5,8]
输出:167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 315 + 358 + 138 + 181 = 167
示例 2:
输入:nums = [1,5]
输出:10
参数范围

n == nums.length
1 <= n <= 300
0 <= nums[i] <= 100

动态规划

nums前后各加一个1,设增加两个1后,nums的长度为m_c。则问题转化为nums[0,m_c-1] ,消除掉nums(0,m_c-1),不消除nums[0]和nums[m_c-1]的最大得分。我们用函数f(0,m_c-1)表示。我们枚举最后消除的元素k,则f(i,j)=f(i,k)+nums[i]*nums[k]*nums[j]+f(k,j)。
k的取值范围(i,j)

共有mn种状态,故空间复杂度是O(nm),每种状态的转移时间复杂度是O(1),故时间复杂度是O(nm)。m和n是t和s的长度。

动态规划的状态表示dp[i][j]等于f(i,j)
动态规划的转移方程f(i,j)=f(i,k)+nums[i]*nums[k]*nums[j]+f(k,j)
动态规划的初始状态全部0
动态规划的填表顺序len = j-i+1。len < 3 ,dp[i][j]=0,无需处理。第一层循环len从3到m_c,第二层循环i从小到大。由短到长处理子字符串,确保动态规划的无后效性
动态规划的返回值dp[0].back()

空间复杂度: 子数组的起点和终点,各n种可能。故空间复杂度:O(nn)。
时间复杂度: 状态nn种,每种状态的转移时间复杂度O(n),故总时间复杂度O(n3)。

代码

核心代码

class Solution {
public:int maxCoins(vector<int>& nums) {nums.insert(nums.begin(), 1);nums.emplace_back(1);m_c = nums.size();vector<vector<int>> dp(m_c, vector<int>(m_c));for (int len = 3; len <= m_c; len++){int j;for (int i = 0; (j = i+len-1) < m_c; i++){			for (int k = i + 1; k < j; k++){dp[i][j] = max(dp[i][j], dp[i][k] + nums[i] * nums[k] * nums[j] + dp[k][j]);}}}return dp[0].back();}int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}
}int main()
{vector<int> nums;{Solution sln;nums = { 3, 1, 5, 8 };auto res = sln.maxCoins(nums);Assert(167, res);}{Solution sln;nums = { 1,5 };auto res = sln.maxCoins(nums);Assert(10, res);}}

2023年一月版

class Solution {
public:
int maxCoins(vector& nums) {
int iMax = 0;
m_c = nums.size();
vector<vector> dp;
dp.assign(m_c+1, vector(m_c));
for (int len = 1; len <= m_c; len++)
{
for (int c = 0; c + len - 1 < m_c; c++)
{
//计算dp[len][c]
//m是最后的气球,这样保证可以拆分两个子项
for (int m = c; m <= c + len - 1; m++)
{
int iSource = GetSource(nums, m,c-1,c+len);
if (m > c)
{
iSource += dp[m - c][c];
}
if (m < c + len - 1)
{
iSource += dp[c + len - 1 - m][m + 1];
}
dp[len][c] = max(dp[len][c], iSource);
}
}
}
return dp[m_c][0];
}
int GetSource(const vector& nums,int c,int iLeft,int iRight)
{
int iScource = nums[c];
if (iLeft >= 0)
{
iScource *= nums[iLeft];
}
if (iRight < m_c)
{
iScource *= nums[iRight];
}
return iScource;
}
int m_c;
};

2023年6月版

class Solution {
public:
int maxCoins(vector& nums) {
nums.insert(nums.begin(), 1);
nums.emplace_back(1);
m_c = nums.size();
//dp[len][iBegin]表示iBegin开始长度为len的区间,消除得剩余首尾2个元素获得的积分
vector<vector> dp(m_c + 1, vector(m_c, 0));
for (int len = 3; len <= m_c; len++)
{
for (int begin = 0; begin + len - 1 < m_c; begin++)
{
const int end = begin + len - 1;
for (int mid = begin + 1; mid < end; mid++)
{
const int leftLen = mid - begin + 1;
const int rightLen = len - leftLen + 1;
const int iNew = dp[leftLen][begin] + nums[begin] * nums[mid] * nums[end] + dp[rightLen][mid];
dp[len][begin] = max(dp[len][begin], iNew);
}
}
}
return dp.back()[0];
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】C++算法312 戳气球的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582727

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以