Four steps to master machine learning with python (including free books amp;amp; resources)

本文主要是介绍Four steps to master machine learning with python (including free books amp;amp; resources),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

To understand and apply machine learning techniques you have to learn Python or R. Both are programming languages similar to C, Java or PHP. However, since Python and R are much younger and “farer away” from the CPU, they are easier. The advantage of Python is that it can be adopted to many other problems than R, which is only used for handling data, analysing it with e.g. machine learning and statistic algorythms and ploting it in nice graphs. Because Python has a broader distribution (hosting websites with Jango, natural language proecssing, accessing APIs of websites such as Twitter, Linkedin etc.) and resembles more classical programming languages like C Python is more popular.

The four steps of learning machine learning in python

  1. First you have to learn the basics of Python using books, courses and videos.
  2. Then you have to master the different moduls such as Pandas, Numpy, Matplotlib and Natural Language Processing (NLP) in order to handle, clean, plot and understand data.
  3. Afterwards you have to able to scrap data from the web which is either done by using APIs of websites or the web-scraping moduls Beautiful Soup. Web scraping allows you to collect data which you feed into you machine learning algorithms.
  4. In the last step you have to learn machine learning (ML) tools like Scikit-Learn or implement ML-algorithm from scratch.

1. Getting started with Python:

And easy and fast way to learn Python is to register at codecademy.com and imediately start to code and learn the basics of python. A classic is the website learnpythonthehardway which is referenced by a lot of python programmers. A good PDF is a byte of python. A list of python resources for beginners is also provided by the python community. A book from O’Reilley is Think Python, which can be downloaded for free from here. A last resource is Introduction to Python for Econometrics, Statistics and Data Analysis which also covers the basics of Python.

2. Important Modules for machine learning

The most important modules for machine learning are NumPy, Pandas, Matplotlib and IPython. A book covering a couple of these modules is Data Analysis with Open Source Tools.  The free book Introduction to Python for Econometrics, Statistics and Data Analysis from 1. also covers Numpy, Pandas, matplotlib and IPython. Another resource is Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, which also covers the most important modules. Her are other free Numpy (Numerical Python, Numpy Userguide, Guide to NumPy), Pandas (Pandas, Powerful Python Data Analysis Toolkit, Practical Business Python, Intros to Pandas Data Structure) and Matplotlib books.

Other resources:

  • 10 minutes to Pandas
  • Pandas for machine learning
  • 100 NumPy exercises

3. Mining and scraping the data from websites and through APIs

Once you have understood the basics of python and the most important modules you have to learn how to collect data from different sources. This technique is also called web scrapping. Classic sources are text from websites, textual data through APIs to access websites such as twitter or linkedin. Good books on web scraping are Mining the Social Web (free book!), Web Scraping with Python and Web Scraping with Python: Collecting Data from the Modern Web. 

Lastly this textual data has to be transformed into numerical data, which is done with natural language processing techniques covered by Natural language processing with Python and Natural Language Annotation for Machine Learning. Other data are images and videos, which can be analysed using computer vision techniques: Programming Computer Vision with Python, Programming Computer Vision with Python: Tools and algorithms for analyzing images  and Practical Python and OpenCV are typical resources to analyse images.

Educational and interesting examples of what you can already do using basic python commands and web scraping techniques can be found in these examples:

  • Mini-Tutorial: Saving Tweets to a Database with Python
  • Web Scraping Indeed for Key Data Science Job Skills
  • Case Study: Sentiment Analysis On Movie Reviews
  • First Web Scraper
  • Sentiment Analysis of Emails
  • Simple Text Classification
  • Basic Sentiment Analysis with Python
  • Twitter sentiment analysis using Python and NLTK
  • Second Try: Sentiment Analysis in Python
  • Natural Language Processing in a Kaggle Competition for Movie Reviews

4. Machine learning with Python

Machine learning can be divided into four groups. Classification, clustering, regression and dimensionalty reduction.

drop_shadows_background2

 

Classification can also be called supervised learning and helps one to classify an image in order to identify a symbol or face in the image, or to classify a user from its profile and to grant him different credit scores. Clustering happens under unsupervised learning and allows the user to identify groups/clusters within its data. Regression permits to estimate a value from a paramter set and can be used to predict the best price for a house, apartment or car.

All important modules, packages and techniques to learn Machine Learning in Python, C, Scala, Java, Julia, MATLAB, Go, R and Ruby. Books about machine learning in python:

I especially recommend the book Machine learning in action. Although a bit short it is probably a classic in machine learning due to its age Programming Collective Intelligence. These two books let you build machine learning algorithms from scratch.

Most recent publications about machine learning are base on the Python module scikit-learn. It makes machine learning very easy since all the algorithm are already implemented. The only thing you do is to tell python which ML-technique should be used to analyse the data.

A free scikit-learn tutorial can be found on the official scikit-learn website. Other posts are be found here:

  • Introduction to Machine Learning with Python and Scikit-Learn
  • Data Science in Python
  • Machine Learning for Predicting Bad Loans
  • A Generic Architecture for Text Classification with Machine Learning
  • Using Python and AI to predict types of wine
  • Advice for applying Machine Learning
  • Predicting customer churn with scikit-learn
  • Mapping Your Music Collection
  • Data Science in Python
  • Case Study: Sentiment Analysis on Movie Reviews
  • Document Clustering with Python
  • Five most popular similarity measures implementation in python
  • Case Study: Sentiment Analysis on Movie Reviews
  • Will it Python?
  • Text Processing in Machine Learning
  • Hacking an epic NHL goal celebration with a hue light show and real-time machine learning
  • Vancouver Room Prices
  • Exploring and Predicting University Faculty Salaries
  • Predicting Airline Delays

Books about machine learning and the module scikit-learn in Python are:

  • Collection of books on reddit
  • Building Machine Learning Systems with Python
  • Building Machine Learning Systems with Python, 2nd Edition
  • Learning scikit-learn: Machine Learning in Python
  • Machine Learning Algorithmic Perspective
  • Data Science from Scratch – First Principles with Python
  • Machine Learning in Python

Books which are published in the coming months are:

  • Introduction to Machine Learning with Python
  • Thoughtful Machine Learning with Python: A Test-Driven Approach

Courses and blogs about Machine learning

You want to earn a degree, take an online course or attand a real workshop, camp or university course? Here are some links: Collection of links to online education in analytics, Big Data, Data Mining, and Data Science. Coursera course in machine learning and Data Analyst Nanodegree from Udacity are other recommended online courses. List of frequently updated blogs about machine learning.

A great youtube video is this class from Jake Vanderplas, Olivier Grisel about Exploring Machine Learning with Scikit-learn!

Theory of Machine Learning

Want to learn the theory of machine learning? The Elements of statistical Learning and Introduction to Statistical Learning are often cited classics. Other books are Introduction to machine learning and A Course in Machine Learning. The links contain free PDF, so you don’t have to pay them! Don’t want to read this? Watch 15 hours theory of machine learning!

原文地址:http://lernpython.de/four-steps-to-master-machine-learning-with-python-including-free-books-resources

翻译底子:   http://python.jobbole.com/84326/

这篇关于Four steps to master machine learning with python (including free books amp;amp; resources)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581840

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地