Java学习苦旅(二十)——七大排序(JAVA代码)

2024-01-07 22:44

本文主要是介绍Java学习苦旅(二十)——七大排序(JAVA代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客将详细讲解排序。

文章目录

  • 排序的概念
  • 插入排序
    • 原理
    • 示例代码
  • 希尔排序
    • 原理
    • 示例代码
  • 选择排序
    • 原理
    • 示例代码
  • 堆排序
    • 原理
    • 示例代码
  • 冒泡排序
    • 原理
    • 示例代码
  • 快速排序
    • 原理
    • 示例代码
    • 优化快速排序
    • 总结
  • 归并排序
    • 原理
    • 示例代码
  • 排序总结
  • 结尾

排序的概念

排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。平时的上下文中,如果提到排序,通常指的是排升序(非降序)。通常意义上的排序,都是指的原地排序(in place sort)。

两个相等的数据,如果经过排序后,排序算法能保证其相对位置不发生变化,则我们称该算法是具备稳定性的排序算法。

例如:

image-20220309190845516

注意:一个稳定的排序,是可以实现为不稳定的排序。但是一个本身就不稳定的排序,是不可以变成稳定的排序。

插入排序

原理

整个区间被分为有序区间和无序区间,每次选择无序区间的第一个元素,在有序区间内选择合适的位置插入。

示例代码

public static void insertSort(int[] array) {for (int i = 0; i < array.length; i++) {int tmp = array[i];int j = i - 1;for (; j >= 0; j--) {if (array[j] > tmp) {array[j+1] = array[j];} else {break;}}array[j+1] = tmp;}
}

对于插入排序,初始数据越接近有序,时间效率越高。

希尔排序

原理

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数gap,把待排序文件中所有记录分成个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后,减小gap的值,重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。

  1. 希尔排序是对直接插入排序的优化。

  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

例如:

image-20220311175904125

示例代码

public static void shell(int[] array, int gap) {for (int i = 1; i < array.length; i++) {int tmp = array[i];int j = i - gap;for (; j >= 0; j -= gap) {if (array[j] > tmp) {array[j+gap] = array[j];} else {break;}}//j回退到了小于0的地方array[j+gap] = tmp;}
}public static void shellSort(int[] array) {int gap = array.length;while (gap > 1) {shell(array,gap);gap /= 2;}shell(array,1);//保证最后是一组
}

选择排序

原理

每一次从无序区间选出最大(或最小)的一个元素,存放在无序区间的最后(或最前),直到全部待排序的数据元素排完 。

示例代码

public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {for (int j = i+1; j < array.length; j++) {if (array[i] > array[j]) {swap(array,i,j);}}}
}public static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;
}

堆排序

原理

基本原理也是选择排序,只是不在使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。

注意: 排升序要建大堆;排降序要建小堆

例如:

image-20220311182318212

示例代码

public static void heapSort(int[] array) {creatHeap(array);int end = array.length-1;while (end > 0) {swap(array,0,end);shiftDown(array,0,end);end--;}
}public static void creatHeap(int[] array) {for (int parent = (array.length-1-1)/2; parent >= 0; parent--) {shiftDown(array,parent,array.length);}
}public static void shiftDown(int[] array, int parent, int len) {int child = 2*parent + 1;while (child < len) {if (child + 1 < len && array[child] < array[child+1]) {child++;}if (array[child] > array[parent]) {swap(array,child,parent);parent = child;child = 2 * parent + 1;} else {break;}}
}

冒泡排序

原理

在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序。

示例代码

public static void bubbleSort(int[] array) {for (int i = 0; i < array.length-1; i++) {boolean flg = false;for (int j = 0; j < array.length-1-i; j++) {if (array[j] > array[j+1]) {swap(array,j+1,j);flg = true;}}if (flg == false) {break;}}
}

快速排序

原理

  1. 从待排序区间选择一个数,作为基准值(pivot);

  2. Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的(可以包含相等的)放到基准值的右边;

  3. 采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 == 1,代表已经有序,或者小区间的长度 == 0,代表没有数据。

partition有两种方法:Hoare法和挖坑法。

Hoare法:

image-20220312183336818

而挖坑法和Hoare法基本一致,只是不再进行交换,而是进行赋值。

示例代码

public static void quickSort(int[] array) {quick(array,0,array.length-1);
}public static void quick(int[] array, int left, int right) {if (left >= right) {return;}//找基准前,我们找到中间大小的值——使用三数取中法int midValIndex = findMidValIndex(array,left,right);swap(array,midValIndex,left);int pivot = partition(array,left,right);//基准quick(array,left,pivot-1);quick(array,pivot+1,right);
}private static int partition(int[] array, int start, int end) {int tmp = array[start];while (start < end) {while (start < end && array[end] >= tmp) {end--;}//end下标遇到了小于tmp的值array[start] = array[end];while (start < end && array[start] <= tmp) {start++;}array[end] = array[start];}array[start] = tmp;return start;
}private static int findMidValIndex(int[] array, int start, int end) {int mid = start + ((end-start) >>> 1);if (array[start] < array[end]) {if (array[start] > array[mid]) {return start;} else if (array[mid] > array[end]) {return end;} else {return mid;}} else {if (array[mid] > array[start]) {return start;} else if (array[mid] < array[end]) {return end;} else {return mid;}}
}

此外,快速排序还可以使用非递归进行实现,代码如下:

public static void quickSort(int[] array) {Stack<Integer> stack = new Stack<>();int left = 0;int right = array.length-1;int pivot = partition(array,left,right);if (pivot > left+1) {stack.push(left);stack.push(pivot-1);}if (pivot < right-1) {stack.push(pivot+1);stack.push(right);}while (!stack.isEmpty()) {right = stack.pop();left = stack.pop();pivot = partition(array,left,right);if (pivot > left+1) {stack.push(left);stack.push(pivot-1);}if (pivot < right-1) {stack.push(pivot+1);stack.push(right);}}
}private static int partition(int[] array, int start, int end) {int tmp = array[start];while (start < end) {while (start < end && array[end] >= tmp) {end--;}//end下标遇到了小于tmp的值array[start] = array[end];while (start < end && array[start] <= tmp) {start++;}array[end] = array[start];}array[start] = tmp;return start;
}

优化快速排序

  1. 通常使用几数取中法选择基准值

  2. partition 过程中把和基准值相等的数也选择出来

  3. 待排序区间小于一个阈值时(例如 48),使用直接插入排序

代码如下:

public static void quickSort(int[] array) {quick(array,0,array.length-1);
}public static void quick(int[] array, int left, int right) {if (left >= right) {return;}//如果区间内的数据,在排序的过程当中,小于某个范围了,可以直接使用插入排序if (right-left+1 <= 40) {//使用直接插入排序insertSort2(array,left,right);return;}//找基准前,我们找到中间大小的值——使用三数取中法int midValIndex = findMidValIndex(array,left,right);swap(array,midValIndex,left);int pivot = partition(array,left,right);//基准quick(array,left,pivot-1);quick(array,pivot+1,right);
}public static void insertSort2(int[] array, int start, int end) {for (int i = 0; i <= end; i++) {int tmp = array[i];int j = i - 1;for (; j >= start; j--) {if (array[j] > tmp) {array[j+1] = array[j];} else {break;}}//j回退到了小于0的地方array[j+1] = tmp;}
}private static int findMidValIndex(int[] array, int start, int end) {int mid = start + ((end-start) >>> 1);if (array[start] < array[end]) {if (array[start] > array[mid]) {return start;} else if (array[mid] > array[end]) {return end;} else {return mid;}} else {if (array[mid] > array[start]) {return start;} else if (array[mid] < array[end]) {return end;} else {return mid;}}
}private static int partition(int[] array, int start, int end) {int tmp = array[start];while (start < end) {while (start < end && array[end] >= tmp) {end--;}//end下标遇到了小于tmp的值array[start] = array[end];while (start < end && array[start] <= tmp) {start++;}array[end] = array[start];}array[start] = tmp;return start;
}

总结

  1. 在待排序区间选择一个基准值
  • 选择左边或者右边

  • 随机选取

  • 几数取中法

  1. 做 partition,使得小的数在左,大的数在右
  • hoare

  • 挖坑

  • 前后遍历

  • 将基准值相等的也选择出来

  1. 分治处理左右两个小区间,直到小区间数目小于一个阈值,使用插入排序

归并排序

原理

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列。即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。例如:

image-20220313101938425

示例代码

public static void mergeSort(int[] array) {mergeSortInternal(array,0,array.length-1);
}private static void mergeSortInternal(int[] array, int low, int high) {if (low >= high) {return;}int mid = low + ((high-low) >>> 1);mergeSortInternal(array,low,mid);mergeSortInternal(array,mid+1,high);merge(array,low,mid,high);
}private static void merge(int[] array, int low, int mid, int high) {int s1 = low;int e1 = mid;int s2 = mid+1;int e2 = high;int[] tmp = new int[high-low+1];int k = 0;while (s1 <= e1 && s2 <= e2) {if (array[s1] <= array[s2]) {tmp[k++] = array[s1++];} else {tmp[k++] = array[s2++];}}while (s1 <= e1) {tmp[k++] = array[s1++];}while (s2 <= e2) {tmp[k++] = array[s2++];}//拷贝tmp数组元素,放到原来的数组array中for (int i = 0; i < k; i++) {array[i+low] = tmp[i];}
}

此外,可以使用非递归的方法实现归并排序,代码如下:

public static void mergeSort(int[] array) {int num = 1;//每组的数据个数while (num < array.length) {for (int i = 0; i < array.length; i++) {int left = i;int mid = left+num-1;if (mid >= array.length) {mid = array.length-1;}int right = mid+num;if (right >= array.length-1) {right = array.length-1;}merge(array,left,mid,right);}num *= 2;}
}

排序总结

排序方法最好平均最坏空间复杂度稳定性
插入排序O(N)O(N2)O(N2)O(1)稳定
希尔排序O(N1.3)O(N1.3) ~ O(N1.5)O(N1.5)O(1)不稳定
选择排序O(N2)O(N2)O(N2)O(1)不稳定
堆排序O(N*log(N))O(N*log(N))O(N*log(N))O(1)不稳定
冒泡排序O(N)O(N2)O(N2)O(1)稳定
快速排序O(N*log(N))O(N*log(N))O(N2)O(log(N)) ~ O(N)不稳定
归并排序O(N*log(N))O(N*log(N))O(N*log(N))O(N)稳定

注意:

希尔排序的时间复杂度与增量有关。

结尾

本篇博客到此结束。
上一篇博客:Java学习苦旅(十九)——详解Java的堆和优先级队列
下一篇博客:Java学习苦旅(二十一)——泛型

这篇关于Java学习苦旅(二十)——七大排序(JAVA代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581481

相关文章

Python跨文件实例化、跨文件调用及导入库示例代码

《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导

SpringBoot实现虚拟线程的方案

《SpringBoot实现虚拟线程的方案》Java19引入虚拟线程,本文就来介绍一下SpringBoot实现虚拟线程的方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录什么是虚拟线程虚拟线程和普通线程的区别SpringBoot使用虚拟线程配置@Async性能对比H

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

Spring Security6.3.x的使用指南与注意事项

《SpringSecurity6.3.x的使用指南与注意事项》SpringSecurity6.3.1基于现代化架构,提供简洁配置、增强默认安全性和OAuth2.1/OIDC支持,采用Lambda... 目录介绍基础配置 (Servlet 应用 - 使用 Lambda DSL)关键配置详解(Lambda DS

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1