OpenMMlab导出PointPillars模型并用onnxruntime推理

2024-01-07 20:52

本文主要是介绍OpenMMlab导出PointPillars模型并用onnxruntime推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导出onnx文件

通过mmdeploy的tool/deploy.py脚本容易转换得到PointPillars的end2end.onnx模型。
在这里插入图片描述
根据https://github.com/open-mmlab/mmdeploy/blob/main/docs/zh_cn/04-supported-codebases/mmdet3d.md显示,截止目前 mmdet3d 的 voxelize 预处理和后处理未转成 onnx 操作;C++ SDK 也未实现 voxelize 计算。

onnxruntime推理

需要安装mmdetection3d等包:

import torch
import onnxruntime
import numpy as np
from torch.nn import functional as F
from mmdet3d.apis import init_model, inference_detector
from mmcv.ops import nms, nms_rotated
from ops.voxel_module import Voxelization
from ops.iou3d_op import nms_gpuconfig_file = 'pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py'
checkpoint_file = 'hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth'class PointPillars(torch.nn.Module):def __init__(self):super().__init__()self.model = init_model(config_file, checkpoint_file, device='cpu')self.box_code_size = 7self.num_classes = 1self.nms_pre = 100self.max_num = 50self.score_thr = 0.1self.nms_thr = 0.01self.voxel_layer = Voxelization(voxel_size= [0.16, 0.16, 4], point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1], max_num_points=32, max_voxels=[16000, 40000])self.mlvl_priors = self.model.bbox_head.prior_generator.grid_anchors([torch.Size([248, 216])])self.mlvl_priors = [prior.reshape(-1, self.box_code_size) for prior in self.mlvl_priors]def pre_process(self, x):res_voxels, res_coors, res_num_points = self.voxel_layer(x)return res_voxels, res_coors, res_num_pointsdef xywhr2xyxyr(self, boxes_xywhr):boxes = torch.zeros_like(boxes_xywhr)half_w = boxes_xywhr[..., 2] / 2half_h = boxes_xywhr[..., 3] / 2boxes[..., 0] = boxes_xywhr[..., 0] - half_wboxes[..., 1] = boxes_xywhr[..., 1] - half_hboxes[..., 2] = boxes_xywhr[..., 0] + half_wboxes[..., 3] = boxes_xywhr[..., 1] + half_hboxes[..., 4] = boxes_xywhr[..., 4]return boxesdef box3d_multiclass_nms(self, mlvl_bboxes, mlvl_bboxes_for_nms, mlvl_scores, mlvl_dir_scores):num_classes = mlvl_scores.shape[1] - 1bboxes = []scores = []labels = []dir_scores = []for i in range(0, num_classes):cls_inds = mlvl_scores[:, i] > self.score_thrif not cls_inds.any():continue_scores = mlvl_scores[cls_inds, i]_bboxes_for_nms = mlvl_bboxes_for_nms[cls_inds, :].cuda()keep = torch.zeros(_bboxes_for_nms.size(0), dtype=torch.long)num_out = nms_gpu(_bboxes_for_nms.cuda(), keep, self.nms_thr, _bboxes_for_nms.device.index)selected = keep[:num_out]bboxes.append(mlvl_bboxes[selected])scores.append(_scores[selected])cls_label = mlvl_bboxes.new_full((len(selected), ), i, dtype=torch.long)labels.append(cls_label)dir_scores.append(mlvl_dir_scores[selected])if bboxes:bboxes = torch.cat(bboxes, dim=0)scores = torch.cat(scores, dim=0)labels = torch.cat(labels, dim=0)dir_scores = torch.cat(dir_scores, dim=0)if bboxes.shape[0] > self.max_num:_, inds = scores.sort(descending=True)inds = inds[:self.max_num]bboxes = bboxes[inds, :]labels = labels[inds]scores = scores[inds]dir_scores = dir_scores[inds]else:bboxes = mlvl_scores.new_zeros((0, mlvl_bboxes.size(-1)))scores = mlvl_scores.new_zeros((0, ))labels = mlvl_scores.new_zeros((0, ), dtype=torch.long)dir_scores = mlvl_scores.new_zeros((0, ))return (bboxes, scores, labels, dir_scores)def decode(self, anchors, deltas):xa, ya, za, wa, la, ha, ra = torch.split(anchors, 1, dim=-1)xt, yt, zt, wt, lt, ht, rt = torch.split(deltas, 1, dim=-1)za = za + ha / 2diagonal = torch.sqrt(la**2 + wa**2)xg = xt * diagonal + xayg = yt * diagonal + yazg = zt * ha + zalg = torch.exp(lt) * lawg = torch.exp(wt) * wahg = torch.exp(ht) * harg = rt + razg = zg - hg / 2return torch.cat([xg, yg, zg, wg, lg, hg, rg], dim=-1)def predict_by_feat_single(self, cls_score, bbox_pred, dir_cls_pred):priors = self.mlvl_priors[0]dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)dir_cls_scores = torch.max(dir_cls_pred, dim=-1)[1]cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.num_classes)scores = cls_score.sigmoid()bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, self.box_code_size)       max_scores, _ = scores.max(dim=1)_, topk_inds = max_scores.topk(self.nms_pre)    priors = priors[topk_inds, :].cpu()bbox_pred = bbox_pred[topk_inds, :]scores = scores[topk_inds, :]dir_cls_scores = dir_cls_scores[topk_inds]bboxes = self.decode(priors, bbox_pred)mlvl_bboxes_bev =  torch.cat([bboxes[:, 0:2], bboxes[:, 3:5], bboxes[:, 5:6]], dim=1)mlvl_bboxes_for_nms = self.xywhr2xyxyr(mlvl_bboxes_bev)    padding = scores.new_zeros(scores.shape[0], 1)scores = torch.cat([scores, padding], dim=1)       results = self.box3d_multiclass_nms(bboxes, mlvl_bboxes_for_nms, scores, dir_cls_scores)bboxes, scores, labels, dir_scores = resultsif bboxes.shape[0] > 0:   dir_rot = bboxes[..., 6] + np.pi/2 - torch.floor(bboxes[..., 6] + np.pi/2 / np.pi ) * np.pibboxes[..., 6] = (dir_rot - np.pi/2 + np.pi * dir_scores.to(bboxes.dtype))         return bboxes, scores, labelsdef forward(self, res_voxels, res_coors, res_num_points):  voxels, coors, num_points = [], [], []res_coors = F.pad(res_coors, (1, 0), mode='constant', value=0)voxels.append(res_voxels)coors.append(res_coors)num_points.append(res_num_points)voxels = torch.cat(voxels, dim=0)coors = torch.cat(coors, dim=0)num_points = torch.cat(num_points, dim=0)x = self.model.voxel_encoder(voxels, num_points, coors) x = self.model.middle_encoder(x, coors, batch_size=1)         x = self.model.backbone(x)x = self.model.neck(x)  cls_scores, bbox_preds, dir_cls_preds = self.model.bbox_head(x)    return cls_scores[0], bbox_preds[0], dir_cls_preds[0]points = np.fromfile('demo/data/kitti/000008.bin', dtype=np.float32)
points = torch.from_numpy(points.reshape(-1, 4))  voxel_layer = Voxelization(voxel_size= [0.16, 0.16, 4], point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1], max_num_points=32, max_voxels=[16000, 40000])     
res_voxels, res_coors, res_num_points = voxel_layer(points)
res_coors = torch.cat([torch.zeros([res_coors.shape[0], 1]), res_coors], axis=1)onnx_session = onnxruntime.InferenceSession("../work_dir/onnx/pointpillars/end2end.onnx", providers=['CPUExecutionProvider'])input_name = []
for node in onnx_session.get_inputs():input_name.append(node.name)output_name = []
for node in onnx_session.get_outputs():output_name.append(node.name)inputs = {}
inputs['voxels'] = res_voxels.numpy()
inputs['num_points'] = res_num_points.type(torch.int32).numpy()
inputs['coors'] = res_coors.type(torch.int32).numpy()outputs = onnx_session.run(None, inputs)
cls_score = torch.from_numpy(outputs[0][0])
bbox_pred = torch.from_numpy(outputs[1][0])
dir_cls_pred = torch.from_numpy(outputs[2][0])pointpillars = PointPillars()
result = pointpillars.predict_by_feat_single(cls_score, bbox_pred, dir_cls_pred)
print(result)

其中ops包来自:https://github.com/zhulf0804/PointPillars/tree/main/ops
结果输出:
在这里插入图片描述

这篇关于OpenMMlab导出PointPillars模型并用onnxruntime推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581202

相关文章

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3