Python条形图热图直方图可视化精神健康状态(医学数据集)

本文主要是介绍Python条形图热图直方图可视化精神健康状态(医学数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标是比开源精神疾病提供的基本报告更深入地挖掘,并了解更多属性之间的相互作用,这可以为所描述的决策者提供信息。

考虑的问题点:

  1. 不同性别属性的员工心理健康是否存在显着差异?
  2. 不同年龄属性的员工心理健康是否存在显着差异?
  3. 提供更多支持的公司是否会让员工心理更健康?
  4. 个人对心理健康的态度是否会影响他们的心理健康和寻求治疗?

数据可视化工具

条形图

条形图或条形图是用矩形条表示数据类别的图形,矩形条的长度和高度与其所表示的值成正比。 条形图可以水平或垂直绘制。 条形图描述了离散类别之间的比较。 该图的一个轴代表正在比较的特定类别,而另一个轴代表与这些类别相对应的测量值。

Python 中的 matplotlib API 提供了 bar() 函数,该函数可用于 MATLAB 风格或作为面向对象的 API。与轴一起使用的 bar() 函数的语法如下:

该函数根据给定的参数创建一个以矩形为边界的条形图。下面是一个简单的条形图示例,它代表一个学院不同课程的学生人数。

import numpy as np
import matplotlib.pyplot as plt # creating the dataset
data = {'C':20, 'C++':15, 'Java':30, 'Python':35}
courses = list(data.keys())
values = list(data.values())fig = plt.figure(figsize = (10, 5))# creating the bar plot
plt.bar(courses, values, color ='maroon', width = 0.4)plt.xlabel("Courses offered")
plt.ylabel("No. of students enrolled")
plt.title("Students enrolled in different courses")
plt.show()

这里plt.bar(courses, value, color=’maroon’)用于指定以courses列为X轴,values为Y轴来绘制条形图。 color 属性用于设置条形的颜色(本例中为栗色)。 plt.xlabel(“提供的课程”) 和 plt.ylabel(“学生已注册”) 用于标记相应的轴。 plt.title( ) 用于为 graph.plt.show() 创建标题,用于使用前面的命令将图形显示为输出。

自定义条形图

import pandas as pd
from matplotlib import pyplot as pltdata = pd.read_csv(r"cars.csv")
data.head()
df = pd.DataFrame(data)name = df['car'].head(12)
price = df['price'].head(12)fig = plt.figure(figsize =(10, 7))plt.bar(name[0:10], price[0:10])plt.show()

从上面的条形图中可以看出,X 轴刻度相互重叠,因此无法正确看到。这样通过旋转X轴刻度,就可以清晰可见。这就是为什么需要定制条形图。

import pandas as pd
from matplotlib import pyplot as pltdata = pd.read_csv(r"cars.csv")
data.head()
df = pd.DataFrame(data)name = df['car'].head(12)
price = df['price'].head(12)fig, ax = plt.subplots(figsize =(16, 9))ax.barh(name, price)for s in ['top', 'bottom', 'left', 'right']:ax.spines[s].set_visible(False)ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')ax.xaxis.set_tick_params(pad = 5)
ax.yaxis.set_tick_params(pad = 10)ax.grid(b = True, color ='grey',linestyle ='-.', linewidth = 0.5,alpha = 0.2)ax.invert_yaxis()for i in ax.patches:plt.text(i.get_width()+0.2, i.get_y()+0.5, str(round((i.get_width()), 2)),fontsize = 10, fontweight ='bold',color ='grey')ax.set_title('Sports car and their price in crore',loc ='left', )fig.text(0.9, 0.15, 'Jeeteshgavande30', fontsize = 12,color ='grey', ha ='right', va ='bottom',alpha = 0.7)plt.show()
多个条形图

当一个变量发生变化时要对数据集进行比较时,可以使用多个条形图。 我们可以轻松地将其转换为堆叠面积条形图,其中每个子组都显示在其他子组之上。 可以通过改变条形的厚度和位置来绘制它。 下面的条形图显示了工程分支通过的学生人数:

import numpy as np 
import matplotlib.pyplot as plt barWidth = 0.25
fig = plt.subplots(figsize =(12, 8)) IT = [12, 30, 1, 8, 22] 
ECE = [28, 6, 16, 5, 10] 
CSE = [29, 3, 24, 25, 17] br1 = np.arange(len(IT)) 
br2 = [x + barWidth for x in br1] 
br3 = [x + barWidth for x in br2] plt.bar(br1, IT, color ='r', width = barWidth, edgecolor ='grey', label ='IT') 
plt.bar(br2, ECE, color ='g', width = barWidth, edgecolor ='grey', label ='ECE') 
plt.bar(br3, CSE, color ='b', width = barWidth, edgecolor ='grey', label ='CSE') plt.xlabel('Branch', fontweight ='bold', fontsize = 15) 
plt.ylabel('Students passed', fontweight ='bold', fontsize = 15) 
plt.xticks([r + barWidth for r in range(len(IT))], ['2015', '2016', '2017', '2018', '2019'])plt.legend()
plt.show() 

堆叠条形图

堆叠条形图代表不同的组彼此重叠。 条形的高度取决于各组结果组合的高度。 它是从底部到值,而不是从零到值。 下面的条形图代表了团队中男孩和女孩的贡献。

import numpy as np
import matplotlib.pyplot as pltN = 5boys = (20, 35, 30, 35, 27)
girls = (25, 32, 34, 20, 25)
boyStd = (2, 3, 4, 1, 2)
girlStd = (3, 5, 2, 3, 3)
ind = np.arange(N) 
width = 0.35fig = plt.subplots(figsize =(10, 7))
p1 = plt.bar(ind, boys, width, yerr = boyStd)
p2 = plt.bar(ind, girls, width,bottom = boys, yerr = girlStd)plt.ylabel('Contribution')
plt.title('Contribution by the teams')
plt.xticks(ind, ('T1', 'T2', 'T3', 'T4', 'T5'))
plt.yticks(np.arange(0, 81, 10))
plt.legend((p1[0], p2[0]), ('boys', 'girls'))plt.show()

热图

直方图

医学数据集清理

医学数据集分析

参阅一:亚图跨际
参阅二:亚图跨际

这篇关于Python条形图热图直方图可视化精神健康状态(医学数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580844

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指