Mistral AI发布首个开源MoE模型,魔搭社区推理微调最佳实践来啦!

本文主要是介绍Mistral AI发布首个开源MoE模型,魔搭社区推理微调最佳实践来啦!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:Mistral AI发布首个开源MoE模型,魔搭社区推理微调最佳实践来啦! - 知乎

导读

继Mistral 7B 后,Mistral AI 近日又放出一记大招——发布了引爆开源社区的首个 MoE 开源模型 Mixtral 8x7B,在 Apache 2.0 许可证下可商用。Mixtral-8x7B 是一款混合专家模型(Mixtrue of Experts),由8个拥有70亿参数的专家网络组成,这种结构不仅提高了模型处理信息的效率,还降低了运行成本。

在能力上,Mixtral-8x7B 支持 32k token 上下文长度,支持英语、法语、意大利语、德语和西班牙语,拥有优秀的代码生成能力,可微调为指令跟随模型(Mixtral 8x7B Instruct,已同步开源),在 MT-Bench 上达到 8.3 分,达到了可媲美GPT3.5的水平。

Mixtral-8x7B 在大多数Benchmarks中表现

与 Llama2 70B 和 GPT3.5相当,甚至部分项上更优于二者

Mixtral 拥有46.7B的总参数量,但每个token只使用 12.9B参数,也就是说,Mixtral的实际执行速度和所需的成本和一个12.9B的模型相当。下图展示了官方公布的模型生成质量与推理消耗成本的关系,与Llama 2相比,Mistral 7B和Mixtral 8x7B表现出自己高能效的优势。

目前魔搭社区已经支持 Mixtral-8x7BMixtral-8x7B-Instruct 的下载、推理、微调一站式体验,并提供对应最佳实践教程,欢迎感兴趣的开发者小伙伴们来玩

环境配置与安装

  1. python 3.8及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上
  4. transformers>=4.36.0

本文主要演示的模型为 Mixtral-8x7B-v0.1 和 Mixtral-8x7B-Instruct-v0.1 两个MoE模型。这两个模型参数量大概是47B左右。半径度训练和推理均需要两张A100,或同等显存(约90G~120G显存)。

模型链接和下载

Mixtral-MoE系列模型现已在ModelScope社区开源,包括:

Mixtral-8x7B-v0.1模型:

https://www.modelscope.cn/models/AI-ModelScope/Mixtral-8x7B-v0.1/summary

Mixtral-8x7B-Instruct-v0.1模型:

https://www.modelscope.cn/models/AI-ModelScope/Mixtral-8x7B-Instruct-v0.1/summary

社区支持直接下载模型的repo:

from modelscope import snapshot_download
model_dir1 = snapshot_download("AI-ModelScope/Mixtral-8x7B-v0.1", revision = "master")
model_dir2 = snapshot_download("AI-ModelScope/Mixtral-8x7B-Instruct-v0.1", revision = "master")

值得一提的是,魔搭社区同步上线了Mistral-7B-Instruct-v0.2的新模型:

https://www.modelscope.cn/models/AI-ModelScope/Mistral-7B-Instruct-v0.2/summary

社区支持直接下载模型的repo:

from modelscope import snapshot_download
model_dir1 = snapshot_download("AI-ModelScope/Mistral-7B-Instruct-v0.2", revision = "master")

Mixtral模型推理

Mixtral-8x7B-v0.1推理代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
import torchmodel_id = "AI-ModelScope/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype=torch.float16)text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Mixtral-8x7B-Instruct-v0.1推理代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
import torchmodel_id = "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype=torch.float16)text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

资源消耗:

Mixtral模型微调和微调后推流

微调代码开源地址:

https://github.com/modelscope/swift/tree/main/examples/pytorch/llm

clone swift仓库并安装SWIFT(魔搭官方提供的训练推理框架)

# 设置pip全局镜像和安装相关的python包
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]
# 下面的脚本需要在此目录下执行
cd examples/pytorch/llm

模型微调脚本

由于模型尺寸较大,因此我们支持了基于LoRA的训练,精度使用了半精度。

  1. Mixtral-8x7B-v0.1模型
# Experimental environment: 2 * A100
# 2 * 50GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_sft.py \--model_id_or_path AI-ModelScope/Mixtral-8x7B-v0.1 \--model_revision master \--sft_type lora \--tuner_backend swift \--dtype AUTO \--output_dir output \--ddp_backend nccl \--dataset dureader-robust-zh \--train_dataset_sample -1 \--num_train_epochs 2 \--max_length 512 \--check_dataset_strategy warning \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules ALL \--batch_size 1 \--weight_decay 0.01 \--learning_rate 1e-4 \--gradient_accumulation_steps 16 \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 300 \--save_steps 300 \--save_total_limit 2 \--logging_steps 10 \--only_save_model true \--gradient_checkpointing false

  1. Mixtral-8x7B-Instruct-v0.1模型
# Experimental environment: 2 * A100
# 2 * 65GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_sft.py \--model_id_or_path AI-ModelScope/Mixtral-8x7B-Instruct-v0.1 \--model_revision master \--sft_type lora \--tuner_backend swift \--dtype AUTO \--output_dir output \--ddp_backend nccl \--dataset dureader-robust-zh \--train_dataset_sample -1 \--num_train_epochs 2 \--max_length 2048 \--check_dataset_strategy warning \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules ALL \--batch_size 1 \--weight_decay 0.01 \--learning_rate 1e-4 \--gradient_accumulation_steps 16 \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 300 \--save_steps 300 \--save_total_limit 2 \--logging_steps 10 \--only_save_model true \--gradient_checkpointing false

训练过程也支持本地数据集,需要指定如下参数:

--custom_train_dataset_path /path/to/local/train/file
--custom_val_dataset_path /path/to/local/val/file

数据集格式请参考:

模型微调后的推理脚本,这里的ckpt_dir需要修改为训练生成的checkpoint文件夹:

# Experimental environment: A100
# 2 * 45GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_infer.py \--ckpt_dir "output/mistral-7b-moe/vx_xxx/checkpoint-xxx" \--load_args_from_ckpt_dir true \--eval_human false \--max_length 4096 \--max_new_tokens 2048 \--temperature 0.1 \--top_p 0.7 \--repetition_penalty 1.05 \--do_sample true \--merge_lora_and_save false \

微调的可视化结果

训练损失:

评估损失

训练后生成样例

[INFO:swift] Setting args.verbose: True
[PROMPT]<s> [INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>Task: Question Generation
Context: 爬行垫根据中间材料的不同可以分为:XPE爬行垫、EPE爬行垫、EVA爬行垫、PVC爬行垫;其中XPE爬行垫、EPE爬行垫都属于PE材料加保鲜膜复合而成,都是无异味的环保材料,但是XPE爬行垫是品质较好的爬行垫,韩国进口爬行垫都是这种爬行垫,而EPE爬行垫是国内厂家为了减低成本,使用EPE(珍珠棉)作为原料生产的一款爬行垫,该材料弹性差,易碎,开孔发泡防水性弱。EVA爬行垫、PVC爬行垫是用EVA或PVC作为原材料与保鲜膜复合的而成的爬行垫,或者把图案转印在原材料上,这两款爬行垫通常有异味,如果是图案转印的爬行垫,油墨外露容易脱落。当时我儿子爬的时候,我们也买了垫子,但是始终有味。最后就没用了,铺的就的薄毯子让他爬。
Answer: XPE
Question:  [/INST][OUTPUT]什么材质的爬行垫好</s>[LABELS]爬行垫什么材质的好
--------------------------------------------------
[PROMPT]<s> [INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>Task: Question Generation
Context: 真实情况是160-162。她平时谎报的168是因为不离脚穿高水台恨天高(15厘米) 图1她穿着高水台恨天高和刘亦菲一样高,(刘亦菲对外报身高172)范冰冰礼服下厚厚的高水台暴露了她的心机,对比一下两者的鞋子吧 图2 穿着高水台恨天高才和刘德华谢霆锋持平,如果她真的有168,那么加上鞋高,刘和谢都要有180?明显是不可能的。所以刘德华对外报的身高174减去10-15厘米才是范冰冰的真实身高 图3,范冰冰有一次脱鞋上场,这个最说明问题了,看看她的身体比例吧。还有目测一下她手上鞋子的鞋跟有多高多厚吧,至少超过10厘米。
Answer: 160-162
Question:  [/INST][OUTPUT]范冰冰身高</s>[LABELS]范冰冰多高真实身高
--------------------------------------------------
[PROMPT]<s> [INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>Task: Question Generation
Context: 防水作为目前高端手机的标配,特别是苹果也支持防水之后,国产大多数高端旗舰手机都已经支持防水。虽然我们真的不会故意把手机放入水中,但是有了防水之后,用户心里会多一重安全感。那么近日最为火热的小米6防水吗?小米6的防水级别又是多少呢? 小编查询了很多资料发现,小米6确实是防水的,但是为了保持低调,同时为了不被别人说防水等级不够,很多资料都没有标注小米是否防水。根据评测资料显示,小米6是支持IP68级的防水,是绝对能够满足日常生活中的防水需求的。
Answer: IP68级
Question:  [/INST][OUTPUT]小米6防水等级</s>[LABELS]小米6防水等级

资源消耗:

2 * 46G

点击链接直达模型:Mixtral-8x7B-v0.1 · 模型库 (modelscope.cn)

这篇关于Mistral AI发布首个开源MoE模型,魔搭社区推理微调最佳实践来啦!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580743

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析