零基础入门语义分割-地表建筑物识别 Task1 赛题理解 -学习笔记

本文主要是介绍零基础入门语义分割-地表建筑物识别 Task1 赛题理解 -学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

比赛地址:零基础入门语义分割比赛-地表建筑物识别,该比赛是由天池和Datawhale联合举办的学习赛,进入比赛页面可以下载相关的数据集。

学习任务:学习任务,查看学习任务,有层次递进的进行学习。

源码地址:源码baseline,源码在Datawhale的github上面,里面可以找到这次比赛的源码。

赛题理解:

赛题名称:零基础入门语义分割 - 地表建筑物识别
赛题目标:通过本次赛题可以引导大家熟练掌握语义分割任务的定义,具体的解题流程和相应的模型,并掌握语义分割任务的发展。
赛题任务:赛题以计算机视觉为背景,要求选手使用给定的航拍图像训练模型并完成地表建筑物识 别任务。

学习目标:

理解赛题背景和赛题数据
完成赛题报名和数据下载,理解赛题的解题思路

 

赛题数据:

遥感技术已成为获取地表覆盖信息最为行之有效的手段,遥感技术已经成功应用于地表覆盖检测、植 被面积检测和建筑物检测任务。本赛题使用航拍数据,需要参赛选手完成地表建筑物识别,将地表航拍图
像素划分为有建筑物和无建筑物两类。 如下图,左边为原始航拍图,右边为对应的建筑物标注。

赛题数据来源( Inria Aerial Image Labeling ),并进行拆分处理。数据集报名后可见并可下载。赛题 数据为航拍图,需要参赛选手识别图片中的地表建筑具体像素位置。

 

数据标签

 

赛题为语义分割任务,因此具体的标签为图像像素类别。在赛题数据中像素属于 2 类(无建筑物和有 建筑物),因此标签为有建筑物的像素。赛题原始图片为 jpg 格式,标签为 RLE 编码的字符串。
RLE 全称( run-length encoding ),翻译为游程编码或行程长度编码,对连续的黑、白像素数以不同 的码字进行编码。RLE 是一种简单的非破坏性资料压缩法,经常用在在语义分割比赛中对标签进行编码。
RLE 与图片之间的转换如下:

 

评价指标:

赛题使用 Dice coeffiffifficient 来衡量选手结果与真实标签的差异性, Dice coeffiffifficient 可以按像素差异性来 比较结果的差异性。Dice coeffiffifficient 的具体计算方式如下:

其中 X 是预测结果, Y 为真实标签的结果。当 X Y 完全相同时 Dice coeffiffifficient 1 ,排行榜使 用所有测试集图片的平均 Dice coeffiffifficient 来衡量,分数值越大越好。

读取数据:

 

配置环境:

此次环境是在本地anaconda中配置的,过程中需要安装一些列python库,和bebug一系列的问题。这里简述一些配置环境过程中的问题。

添加conda下载源:

跟pip一样,conda也可以添加一些国内的下载源,这样在下载的时候就非常快,可以参考我的博客添加conda下载源

anaconda创建虚拟环境:

在进行一个新的任务时候,最好新建一个虚拟环境,在新建的虚拟环境进行试验,以免环境太乱,当任务结束的时候虚拟环境还可以进行删除。

创建虚拟环境:可能需要几分钟,这里的python版本可以进行指定

conda create --name Seg python=3.8(在base环境中直接创建即可)

验证是否生成:

打开anaconda prompt输入conda env list

环境创建完成后会在anaconda文件夹中多一个envs文件夹,里面就是添加的环境变量。

激活虚拟环境:

Linux:  source activate your_env_name(虚拟环境名称)

Windows: activate your_env_name(虚拟环境名称)

jupyter notebook打开D盘中的文件:

由于我将文件夹放在了D盘中,而jupyter notebook在打开的时候默认显示C盘中的文件,这时候我们就看不到D盘中的文件,解决方法也很简单,jupyter notebook打开D盘中的文件

这样我们就成功安装了虚拟环境,并用jupyter notebook打开了D盘中的文件。

在jupyter notebook中切换虚拟环境:

进入jupyter notebook发现kernel仍然是原来的虚拟环境,找不到新建的虚拟环境,解决方法如下在jupyter notebook中切换不同的虚拟环境

安装cv2:

conda install --channel https://conda.anaconda.org/menpo opencv
或者pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

或者pip install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple

安装albumentations

ModuleNotFoundError: No module named 'albumentations'

解决方案:

pip install albumentations -i https://pypi.tuna.tsinghua.edu.cn/simple

报错:

ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问。: 'D:\\anaconda\\Lib\\site-packages\\cv2\\cv2.cp38-win_amd64.pyd'

Consider using the `--user` option or check the permissions.

解决方案:

pip install --user albumentations -i https://pypi.tuna.tsinghua.edu.cn/simple

安装numpy:

ModuleNotFoundError: No module named 'numpy'

解决办法:conda install numpy

安装pandas

ModuleNotFoundError: No module named 'pandas'

解决办法:conda install pandas

安装tqdm

ModuleNotFoundError: No module named 'tqdm'

解决办法:conda install tqdm

安装matplotlib

ModuleNotFoundError: No module named 'matplotlib'

conda install matplotlib

安装scipy:

ModuleNotFoundError: No module named 'scipy'

解决办法:conda install scipy

安装skimage

ModuleNotFoundError: No module named 'skimage'

解决办法:conda install scikit-image

安装imgaug

ModuleNotFoundError: No module named 'imgaug'

解决办法:conda install imgaug

安装torch:

ModuleNotFoundError: No module named 'torch'

解决办法:conda install pytorch

在jupyter中安装python库:

pip3 install torch -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

pip3 install torch -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

安装torchvision:

ModuleNotFoundError: No module named 'torchvision'

解决办法:conda install torchvision

安装python包的时候文件夹权限报错:

在安装Python包的时候可能会出现文件夹权限的错误,解决办法:安装python包的时候文件夹权限报错

报错1:

TypeError: image must be numpy array type

原因:没有读取到图片

这个报错解决了好久,原因是因为路径中出现了中文,没有识别出来,指向了空文件。

train_mask = pd.read_csv('./数据/train_mask.csv', sep='\t', names=['name', 'mask'])

改成英文即可。

报错2:

AttributeError: module 'torchvision.models' has no attribute 'segmentation'

解决办法:

先看一下torchvision的版本是多少,print(torchvision.__version__),输出版本是0.2.2。所以猜测可能原因是版本太低,尝试升级版本。

输入:

pip install --upgrade torchvision==0.5 -i https://pypi.tuna.tsinghua.edu.cn/simple

或者

conda update torchvision

但是报错:

于是尝试手动安装torch,和torchvision库。

参考链接:anaconda手动安装torch1.7.1和torchvision0.8.1

问题即可解决。

报错3:

在代码中,import albumentations as A的时候,出现错误:anaconda服务似乎挂掉了,但是会立刻重启的。解决办法:Jupyter notebook报错:anaconda服务似乎挂掉了,但是会立刻重启的.

报错4:

在开始运行模型的时候报错:RuntimeError: CUDA out of memory. Tried to allocate 64.00 MiB (GPU 0; 4.00 GiB total capacity; 2.41 GiB already allocated; 49.14 MiB free; 2.51 GiB reserved in total by PyTorch)。原因:显存不够。解决办法:改小batch-size

训练结果:

我们发现训练成功,且保存了最佳模型。进行测试后得到tmp文件。上传至天池得分数0.7254。

欢迎关注公众号:一起进步~

 

 

这篇关于零基础入门语义分割-地表建筑物识别 Task1 赛题理解 -学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580650

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和