Jaya算法在电力系统最优潮流计算中的应用(创新点)【Matlab代码实现】

本文主要是介绍Jaya算法在电力系统最优潮流计算中的应用(创新点)【Matlab代码实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 

1 概述

2 数学模型

2.1 目标函数

2.2 约束条件 

2.3 Jaya 算法

3 仿真结果 

4 Matlab代码实现


1 概述

 最优潮流计算与电力系统的稳定、经济运行密切相关,自20世纪60年代提出最优潮流的概念,大量学者相继提出了各种优化技术来求解电力系统的最优潮流问题。Jaya算法是于2016年提出的一种简单高效的新型优化算法,具有收敛快寻优强的特点。算例在IEEE39节点上实现。

2 数学模型

2.1 目标函数

           

目标函数(Matlab代码实现) 

function [F,Plosses] = ObjectiveFunction(V_o,line_o,Bgen,Theta_o,nbranch,FromNode,ToNode,PQ)
%% 该函数计算目标函数,包含惩罚项因子
for k=1:nbrancha(k)=line_o(k,6);if a(k)==0 % 在这种情况下,我们正在分析线路Zpq(k)=line_o(k,3)+1i*line_o(k,4); % 线路阻抗Ypq(k)=Zpq(k)^-1; % 线路导纳gpq(k)=real(Ypq(k)); % 线路电导%+++++++++++目标函数1,系统网损+++++++++++Llpq(k)=gpq(k)*(V_o(FromNode(k))^2 +V_o(ToNode(k))^2 -2*V_o(FromNode(k))*V_o(ToNode(k))*cos(Theta_o(FromNode(k))-Theta_o(ToNode(k))));end
end
%% 有功总损耗
Plosses=sum(Llpq);
%% 目标函数
KL=1000; % 惩罚因子
for k=1:length(PQ)%% 负载电压偏移(0.95~1.05)if V_o(k+length(Bgen))<0.95   %电压偏移小于0.95DVL(k)=0.95-V_o(k+length(Bgen));  %惩罚项1endif V_o(k+length(Bgen))>1.05    %电压偏移大于1.05DVL(k)=V_o(k+length(Bgen))-1.05;  %惩罚项2endif V_o(k+length(Bgen))>=0.95    %电压偏移如果在0.95~1.05之间if V_o(k+length(Bgen))<=1.05DVL(k)=0;               %电压偏移惩罚项为零endend
end
DVLoads=sum(DVL.*DVL);
Z=Plosses+KL*DVLoads; %目标函数
F=Z; % 目标函数
end

function [F,Plosses] = ObjectiveFunction(V_o,line_o,Bgen,Theta_o,nbranch,FromNode,ToNode,PQ)
%% 该函数计算目标函数,包含惩罚项因子
for k=1:nbranch
    a(k)=line_o(k,6);
    if a(k)==0 % 在这种情况下,我们正在分析线路
        Zpq(k)=line_o(k,3)+1i*line_o(k,4); % 线路阻抗
        Ypq(k)=Zpq(k)^-1; % 线路导纳
        gpq(k)=real(Ypq(k)); % 线路电导
        %+++++++++++目标函数1,系统网损+++++++++++
        Llpq(k)=gpq(k)*(V_o(FromNode(k))^2 +V_o(ToNode(k))^2 -2*V_o(FromNode(k))*V_o(ToNode(k))*cos(Theta_o(FromNode(k))-Theta_o(ToNode(k))));
    end
end
%% 有功总损耗
Plosses=sum(Llpq);
%% 目标函数
KL=1000; % 惩罚因子
for k=1:length(PQ)
    %% 负载电压偏移(0.95~1.05)
    if V_o(k+length(Bgen))<0.95   %电压偏移小于0.95
        DVL(k)=0.95-V_o(k+length(Bgen));  %惩罚项1
    end
    if V_o(k+length(Bgen))>1.05    %电压偏移大于1.05
        DVL(k)=V_o(k+length(Bgen))-1.05;  %惩罚项2
    end
    if V_o(k+length(Bgen))>=0.95    %电压偏移如果在0.95~1.05之间
        if V_o(k+length(Bgen))<=1.05
            DVL(k)=0;               %电压偏移惩罚项为零
        end
    end
end
DVLoads=sum(DVL.*DVL);
Z=Plosses+KL*DVLoads; %目标函数
F=Z; % 目标函数
end

2.2 约束条件 

              

2.3 Jaya 算法

Jaya 算法是 Rao 等提出的一种元启发式算法,它基于持续改进的原理,将个体不断向优秀个体靠拢,同时不断远离差的个体,进而不断提高解的质量。传统 Jaya 算法主要基于迭代公式,每次通过该方程迭代进化获取新的解,因此 Jaya 算法不像其他进化算法需要许多的参数,它只需要针对特定问题调整迭代过程的参数,减少了因为调整过多参数而带来的测试上的麻烦。与其它元启发式算法相比,Jaya 算法更容易理解和实现。该算法的迭代公式如下所示:

 

 Jaya优化算法流程图如下:

            在这里插入图片描述

目标函数: 

%% 基于Jaya算法的电力系统最优潮流%% 有功损耗最小化
clear all;
close all;
clc%% ++++++++++++++++电力系统数据库+++++++++++++++
% 下面的文件包含了母线、线路矩阵等电力系统拓扑信息
data_39;
% 线路类型和发电机
bus_o=bus; line_o=line;
slack=find(bus(:,10)==1); % 松弛节点/平衡节点
PV=find(bus(:,10)==2);   % PV节点
Bgen=vertcat(slack,PV);     %平衡节点和松弛节点【C = vertcat(A,B) 将 B 垂直串联到 A 的末尾。】
PQ=find(bus(:,10)==3);   % PQ节点/负荷节点%% +++++++++++++++ 优化算法的参数 ++++++++++++++++
pop =  210;                                % 种群规模
n_itera = 35;                             % 优化算法迭代次数
Vmin=0.95;                                % 发电机电压的最小值
Vmax=1.05;                                % 发电机电压的最大值
mini_tap = 0.95;                          % TAP的最小值
maxi_tap = 1.05;                          % TAP的最大值
Smin=-0.5;                                % 视在功率最小值
Smax=0.5;                                 % 视在功率最大值
pos_Shunt = find( bus(:,11) ~= 0);        % 母线矩阵中分流点的位置
pos_tap = find( line(:,6) ~= 0);          % TAPs在行矩阵中的位置
tap_o = line(pos_tap,6);                  % TAPs初始值
Shunt_o = bus(pos_Shunt,9);               %分流器的初始值
n_tap = length(pos_tap);                  % TAPs的数量
n_Shunt = length(pos_Shunt);              % 分流器的数量
n_nodos = length(bus(:,1));               % 电力系统的节点数量%% ++++++++++++++++ 第一:运行基本情况下的潮流 ++++++++++++++++
% 存储基本情况的电压和相角
[V_o,Theta_o,~] = PowerFlowClassical(bus_o,line_o);
%% +++++++++++++++++++计算有功功率损耗++++++++++++++++++++++
nbranch=length(line_o(:,1));
FromNode=line_o(:,1);
ToNode=line_o(:,2);
for k=1:nbrancha(k)=line_o(k,6);if a(k)==0 % 在这种情况下,我们正在分析线路Zpq(k)=line_o(k,3)+1i*line_o(k,4); % 线路的阻抗Ypq(k)=Zpq(k)^-1; % 线路导纳gpq(k)=real(Ypq(k)); % 线路电导% 对应线路有功损耗Llpq(k)=gpq(k)*(V_o(FromNode(k))^2 +V_o(ToNode(k))^2 -2*V_o(FromNode(k))*V_o(ToNode(k))*cos(Theta_o(FromNode(k))-Theta_o(ToNode(k))));end
end
% 有功总损耗
Plosses=sum(Llpq);
%% +++++++++++++++++++++++++++ 最优潮流 ++++++++++++++++++++++++++
% 启动种群
for k=1:n_tap % 启动TAP种群x_tap(:,k) = mini_tap +(maxi_tap - mini_tap)*(0.1*floor((10*rand(pop,1))));
end 
for k=1:n_Shunt % 启动分流种群x_shunt(:,k) = Smin +(Smax - Smin)*(0.1*floor((10*rand(pop,1))));
end
for k=1:length(Bgen) % 从发电机启动电压的种群x_vg(:,k) = Vmin +(Vmax - Vmin)*(0.1*floor((10*rand(pop,1))));
end
%% JAYA 算法
for k=1:n_itera% 使用TAP的新值,分流和发电机电压重新计算电压和节点导纳%修改线路和母线矩阵for p=1:popfor q=1:n_tapr=pos_tap(q);line(r,6)=x_tap(p,q); % 根据新的TAP值对线矩阵进行修正end; clear rfor qa=1:n_Shuntr=pos_Shunt(qa);bus(r,9)=x_shunt(p,qa); % 根据新的分流值修改母线矩阵end; clear rfor qb=1:length(Bgen)r=Bgen(qb);bus(r,2)=x_vg(p,qb); %根据新的VG值修改总线矩阵end% 随着新的线路和母线矩阵运行潮流[V_n,Theta_n,~] = PowerFlowClassical(bus,line);% 目标函数[F,~] = ObjectiveFunction(V_n,line_o,Bgen,Theta_n,nbranch,FromNode,ToNode,PQ);Ofun=F; Obfun(k,p)=F;end

%% 基于Jaya算法的电力系统最优潮流

%% 有功损耗最小化
clear all;
close all;
clc

%% ++++++++++++++++电力系统数据库+++++++++++++++
% 下面的文件包含了母线、线路矩阵等电力系统拓扑信息
data_39;
% 线路类型和发电机
bus_o=bus; line_o=line;
slack=find(bus(:,10)==1); % 松弛节点/平衡节点
PV=find(bus(:,10)==2);   % PV节点
Bgen=vertcat(slack,PV);     %平衡节点和松弛节点【C = vertcat(A,B) 将 B 垂直串联到 A 的末尾。】
PQ=find(bus(:,10)==3);   % PQ节点/负荷节点

%% +++++++++++++++ 优化算法的参数 ++++++++++++++++
pop =  210;                                % 种群规模
n_itera = 35;                             % 优化算法迭代次数
Vmin=0.95;                                % 发电机电压的最小值
Vmax=1.05;                                % 发电机电压的最大值
mini_tap = 0.95;                          % TAP的最小值
maxi_tap = 1.05;                          % TAP的最大值
Smin=-0.5;                                % 视在功率最小值
Smax=0.5;                                 % 视在功率最大值
pos_Shunt = find( bus(:,11) ~= 0);        % 母线矩阵中分流点的位置
pos_tap = find( line(:,6) ~= 0);          % TAPs在行矩阵中的位置
tap_o = line(pos_tap,6);                  % TAPs初始值
Shunt_o = bus(pos_Shunt,9);               %分流器的初始值
n_tap = length(pos_tap);                  % TAPs的数量
n_Shunt = length(pos_Shunt);              % 分流器的数量
n_nodos = length(bus(:,1));               % 电力系统的节点数量

%% ++++++++++++++++ 第一:运行基本情况下的潮流 ++++++++++++++++
% 存储基本情况的电压和相角
[V_o,Theta_o,~] = PowerFlowClassical(bus_o,line_o);
%% +++++++++++++++++++计算有功功率损耗++++++++++++++++++++++
nbranch=length(line_o(:,1));
FromNode=line_o(:,1);
ToNode=line_o(:,2);
for k=1:nbranch
    a(k)=line_o(k,6);
    if a(k)==0 % 在这种情况下,我们正在分析线路
        Zpq(k)=line_o(k,3)+1i*line_o(k,4); % 线路的阻抗
        Ypq(k)=Zpq(k)^-1; % 线路导纳
        gpq(k)=real(Ypq(k)); % 线路电导
        % 对应线路有功损耗
        Llpq(k)=gpq(k)*(V_o(FromNode(k))^2 +V_o(ToNode(k))^2 -2*V_o(FromNode(k))*V_o(ToNode(k))*cos(Theta_o(FromNode(k))-Theta_o(ToNode(k))));
    end
end


% 有功总损耗
Plosses=sum(Llpq);
%% +++++++++++++++++++++++++++ 最优潮流 ++++++++++++++++++++++++++
% 启动种群
for k=1:n_tap % 启动TAP种群
    x_tap(:,k) = mini_tap +(maxi_tap - mini_tap)*(0.1*floor((10*rand(pop,1))));
end 
for k=1:n_Shunt % 启动分流种群
     x_shunt(:,k) = Smin +(Smax - Smin)*(0.1*floor((10*rand(pop,1))));
end
for k=1:length(Bgen) % 从发电机启动电压的种群
    x_vg(:,k) = Vmin +(Vmax - Vmin)*(0.1*floor((10*rand(pop,1))));
end
%% JAYA 算法
for k=1:n_itera
    % 使用TAP的新值,分流和发电机电压重新计算电压和节点导纳
    %修改线路和母线矩阵
    for p=1:pop
        for q=1:n_tap
            r=pos_tap(q);
            line(r,6)=x_tap(p,q); % 根据新的TAP值对线矩阵进行修正
        end; clear r
        for qa=1:n_Shunt
            r=pos_Shunt(qa);
             bus(r,9)=x_shunt(p,qa); % 根据新的分流值修改母线矩阵
        end; clear r
        for qb=1:length(Bgen)
            r=Bgen(qb);
            bus(r,2)=x_vg(p,qb); %根据新的VG值修改总线矩阵
        end
        % 随着新的线路和母线矩阵运行潮流
        [V_n,Theta_n,~] = PowerFlowClassical(bus,line);
        % 目标函数
        [F,~] = ObjectiveFunction(V_n,line_o,Bgen,Theta_n,nbranch,FromNode,ToNode,PQ);
        Ofun=F; Obfun(k,p)=F;
    end

3 仿真结果 

                      

                     

                       

                  

4 Matlab代码实现

这篇关于Jaya算法在电力系统最优潮流计算中的应用(创新点)【Matlab代码实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580363

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符