数学建模学习(90):Jaya优化算法对多元函数寻优

2024-01-07 15:20

本文主要是介绍数学建模学习(90):Jaya优化算法对多元函数寻优,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、算法介绍

算法步骤:

  1. 首先初始化种群个体数量,确定每个个体长度以及终止判据
  2. 找到当前种群下的最优个体 best 和最差个体 worst
  3. 遍历所有个体,根据公式(1)更新个体参数
    在这里插入图片描述

其中,i,j,k分别代表迭代代数,个体的某变量,种群中某个体。该公式是Jaya算法的核心

  1. 判断更新后的个体是否优于更新前的个体,若是,则更新个体,否则保留原个体到下一代
  2. 判断当前最优个体是否满足终止判据,若是则结束程序,否则遍历步骤2-4

二、 案例实现(一)

2.1 目标函数

第一步:导入模块

import numpy as np# Jaya
from pyMetaheuristic.algorithm import victory
from pyMetaheuristic.utils import graphs

第二步:目标函数设置

def easom(variables_values = [0, 0]):x1, x2     = variables_valuesfunc_value = -np.cos(x1) * np.cos(x2) * np.exp(-(x1 - np.pi) ** 2 - (x2 - np.pi) ** 2)return func_valueplot_parameters = {'min_values': (-5, -5),'max_values': (5, 5),'step': (0.1, 0.1),'solution': [],'proj_view': '3D','view': 'notebook'
}
graphs.plot_single_function(target_function = easom, **plot_parameters)

如下:
在这里插入图片描述

2.2 算法实现

第三步:设置算法参数

# jaya - Parameters
parameters = {# 该参数50左右'size': 50,'min_values': (-5, -5),'max_values': (5, 5),# 迭代次数'iterations': 500,'verbose': True
}

第四步:执行算法

jy = victory(target_function = easom, **parameters)

第五步:获取算法最优解

variables = jy[:-1]
minimum   = jy[ -1]
print('变量值为: ', np.around(variables, 4) , ' 最小值为: ', round(minimum, 4) )

如下:

变量值为:  [3.1258 3.1804]  最小值为:  -0.9974

第六步:可视化最优值
在这里插入图片描述

三、案例(二)

我们换一个目标函数,以五维球形函数的最优化计算为例子.

def easom(variables_values):x    = variables_valuesfunc_value = y=sum(x**2 for x in variables_values)return func_value

后续参数类似。。不再重复演示。

四、额外补充

4.1 封装代码

如果你希望改进该算法模块,可以研究修改以下代码:


# Required Libraries
import numpy  as np
import random
import os############################################################################# Function
def target_function():return############################################################################# Function: Initialize Variables
def initial_position(size = 5, min_values = [-5,-5], max_values = [5,5], target_function = target_function):position = np.zeros((size, len(min_values)+1))for i in range(0, size):for j in range(0, len(min_values)):position[i,j] = random.uniform(min_values[j], max_values[j])position[i,-1] = target_function(position[i,0:position.shape[1]-1])return position# Function: Updtade Position by Fitness
def update_bw_positions(position, best_position, worst_position):for i in range(0, position.shape[0]):if (position[i,-1] < best_position[-1]):best_position = np.copy(position[i, :])if (position[i,-1] > worst_position[-1]):worst_position = np.copy(position[i, :])return best_position, worst_position# Function: Search
def update_position(position, best_position, worst_position, min_values = [-5,-5], max_values = [5,5], target_function = target_function):candidate = np.copy(position[0, :])for i in range(0, position.shape[0]):for j in range(0, len(min_values)):a  = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)b  = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)candidate[j] = np.clip(position[i, j] + a * (best_position[j] - abs(position[i, j])) - b * ( worst_position[j] - abs(position[i, j])), min_values[j], max_values[j] )candidate[-1] = target_function(candidate[:-1])if (candidate[-1] < position[i,-1]):position[i,:] = np.copy(candidate)return position############################################################################# Jaya Function
def victory(size = 5, min_values = [-5,-5], max_values = [5,5], iterations = 50, target_function = target_function, verbose = True):    count              = 0position           = initial_position(size, min_values, max_values, target_function)best_position      = np.copy(position[0, :])best_position[-1]  = float('+inf')worst_position     = np.copy(position[0, :])worst_position[-1] = 0while (count <= iterations): if (verbose == True):print('Iteration = ', count,  ' f(x) = ', best_position[-1])position                      = update_position(position, best_position, worst_position, min_values, max_values, target_function)best_position, worst_position = update_bw_positions(position, best_position, worst_position)count                         = count + 1     return best_position 

4.2 算法论文

http://www.growingscience.com/ijiec/Vol7/IJIEC_2015_32.pdf

这篇关于数学建模学习(90):Jaya优化算法对多元函数寻优的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580360

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不