天池大赛——街景字符编码识别比赛(零基础入门CV赛事)

2024-01-07 12:48

本文主要是介绍天池大赛——街景字符编码识别比赛(零基础入门CV赛事),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 赛题理解

1.1 题目内容

识别街景图像中的门牌号。

1.2 数据集

数据集来自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN),并根据一定方式采样得到比赛数据集。其中训练集30000张图片,检验集10000张图片,测试集A和B各40000张图片。图片大小不一,为三色RGB图片。标记信息为图片中各个数字的位置框和数字信息。
数据集样本展示

1.3 解题思路:

方法一:将问题看作定长字符串的分类问题,使用深度神经网络直接预测各个数字。
方法二:先对字符进行检测,再进行分类。

2 数据读取与数据扩增

2.1 数据读取

赛题举办方提供的数据包括由30000张图片组成的训练集,10000张图片组成的检验集和40000张图片组成的测试集A,图片格式为png格式。数据标签为json格式。
数据读取方式:torch.utils.data.DataLoader, PIL.Image, glob, json库的使用

# 数据标签的 json格式读取,转化为字典格式
import json
train_json = json.load(open('mchar_train.json'))# 读取训练图片的路径信息
import glob
train_path = glob.glob('./input/mchar_train/*.png')
train_path.sort()# 数据读取
class SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_labelif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 设置最⻓长的字符⻓长度为4个lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl) + (4 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:4]))def __len__(self):return len(self.img_path)# 这里暂时不使用标签中的图片位置信息,只使用类别信息
train_label = [train_json[x]['label'] for x in train_json]# 数据扩充
import torchvision.transforms as transforms# torch中的数据读取方式,利用torch.utils.data.DataLoader 来实现
# transforms 为数据扩充方法
train_loader = torch.utils.data.DataLoader(SVHNDataset(train_path, train_label,transforms.Compose([、# 缩放到固定尺度transforms.Resize((64, 128)),# 随机裁剪transforms.RandomCrop((60, 120)),# 颜色变换transforms.ColorJitter(0.3, 0.3, 0.2),# 随机旋转transforms.RandomRotation(5),# 转化为pytorch的tensortransforms.ToTensor(),# 图片像素归一化transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])),batch_size=40,shuffle=True,num_workers=0,
)

2.2 数据扩充方法

对于图片的数据扩充方法,有尺度变化、随机裁剪、中心裁剪、随机旋转、水平翻转、垂直翻转、颜色对比度变换等。对于数字识别而言,由于数字6和数字9的相似性,不可以使用随机翻转的方法。在上述代码中,使用了随机裁剪、颜色变换、随机旋转这三种数据扩充方法。

3 字符识别模型

3.1 尝试一:定长字符识别模型

对于数据集中的图片,大多数图片的标签数字数量小于5。训练集中的数字标签数字数量统计结果如下:
含有1个数字:4636, 占比15.45%;
含有2个数字:16262, 占比54.21%;
含有3个数字:7813, 占比26.04%;
含有4个数字:1280, 占比4.27%;
含有5个数字:8, 占比0.03%;
含有6个数字,1, 占比0.00%。
对于定长字符识别模型而言,其做法是设定字符长度,将不定长的字符补全(在10个数字类别之外,补充背景类别)。由于绝大多数图片的字符数量小于5, 因此设定定长字符的长度为4。
同时,模型使用了ResNet预训练模型。在ResNet模型的最后一层,并联接上4个子分支,每个分支由两个全连接层组成,分别预测对应位置的数字。
在使用不同ResNet主干网络的情况下,模型取得了不同的预测效果。在使用相同数据增强方法的情况下,使用ResNet18预训练模型,最终得分为0.52;ResNet52 得分为 0.63; ResNet101得分为0.69。在模型训练的过程中出现了过拟合的现象,训练集的误差不断减小,而检验集上的误差最后却保持在一定范围。为了缓解这样的问题,使用额外的数据增强方法对训练集的数据进行了扩增。包括高斯模糊和加入随机噪声等。最后在使用ResNet101主干网络的情况下,模型得分达到了0.73。

3.2 尝试二:两个定长字符识别模型的组合

在使用定长字符模型时,模型最后的4个子分支分别预测不同位置的数字。但是由于不同位置数字出现频率并不相同,比如所有图片都存在第1位数字,因此预测第1位数字的子分支应该可以取得比较准确的预测结果;而对于预测第4位数字的子分支,由于95.7%的标签标记为背景,其预测的效果可能是有问题的。在这样的分析下,从预测效率上来看,可能出现的情况是:子分支1>子分支2>子分支3>子分支4。
因此,一个比较自然的想法是:训练两个模型,其中一个模型从左往右预测数字,另一个模型从右往左预测数字,最后再综合两个模型的预测结果,确定最后的结果。
初步的实验表明:该方法似乎不起效果。。

3.3 尝试三:使用检测+预测的思路

由于数据标签同时包含类别和位置信息,因此可以使用检测+预测的思路来做。同样包括两种方法,第一种方法是同时做检测和类别预测;第二种方法是先做检测,将数字框识别出来,再对图像做裁剪进行分类预测。目前尝试使用了yolov3和yolov4模型来进行预测。初步的实验结果显示模型预测效果极差,基本不具有预测功能。。。

3.4 其它方法

其它方法还包括不定长字符识别方法,其中典型的代表是CTPN;以及两阶段的检测模型,比如Faster RCNN。之后计划将这两个模型都实现一遍。

4 模型训练与验证

定义型的训练函数和验证函数,设置相应的参数,进行训练。其中训练函数train()包含梯度反向传播和参数更新。

def train(train_loader, model, criterion, optimizer):# 切换模型为训练模式model.train()train_loss = []T0 = time.time()for i, (input, target) in enumerate(train_loader):if use_cuda:input = input.cuda()target = target.cuda()c0, c1, c2, c3 = model(input)target = target.long()loss = criterion(c0, target[:, 0]) + \criterion(c1, target[:, 1]) + \criterion(c2, target[:, 2]) + \criterion(c3, target[:, 3])optimizer.zero_grad()loss.backward()optimizer.step()if i % 100 == 0:TT = time.time()print(loss.item(), TT-T0)T0 = time.time()train_loss.append(loss.item())return np.mean(train_loss)def validate(val_loader, model, criterion):# 切换模型为预测模型model.eval()val_loss = []# 不不记录模型梯度信息with torch.no_grad():for i, (input, target) in enumerate(val_loader):if use_cuda:input = input.cuda()target = target.cuda()c0, c1, c2, c3 = model(input)target = target.long()loss = criterion(c0, target[:, 0]) + \criterion(c1, target[:, 1]) + \criterion(c2, target[:, 2]) + \criterion(c3, target[:, 3]) val_loss.append(loss.item())return np.mean(val_loss)

模型训练和验证。将验证结果最好的模型加以保存。

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
use_cuda = True
if use_cuda:model = model.cuda()
for epoch in range(5):train_loss = train(train_loader, model, criterion, optimizer)val_loss = validate(val_loader, model, criterion)val_label = [''.join(map(str, x)) for x in val_loader.dataset.img_label]val_predict_label = predict(val_loader, model, 1)val_predict_label = np.vstack([val_predict_label[:, :11].argmax(1),val_predict_label[:, 11:22].argmax(1),val_predict_label[:, 22:33].argmax(1),val_predict_label[:, 33:44].argmax(1),]).Tval_label_pred = []for x in val_predict_label:val_label_pred.append(''.join(map(str, x[x!=10])))val_char_acc = np.mean(np.array(val_label_pred) == np.array(val_label))print('Epoch: {0}, Train loss: {1} \t Val loss: {2}'.format(epoch, train_loss, val_loss))print(val_char_acc)# 记录下验证集精度if val_loss < best_loss:best_loss = val_losstorch.save(model.state_dict(), './model.pt')

5 模型集成

对于模型集成,使用了两种方法。第一种方法是在训练过程中保留了两个“最优模型”,分别对应于检验集损失最少和准确率最高两种情形,最后将两个“最优模型”集成,进行预测。

# 记录下验证集精度
if val_loss < best_loss:best_loss = val_losstorch.save(model.state_dict(), './weights/model.pt')
if val_acc > best_acc:best_acc = val_acctorch.save(model.state_dict(), './weights/model_acc.pt')

第二种方法在预测的时候,通过transforms.RandomCrop方法,预测10次,将10次预测结果进行集成。

def predict2(test_loader, model1, model2, tta=10):model1.eval()model2.eval()test_pred_tta = True# TTA 次数for _ in range(tta):test_pred = []with torch.no_grad():for i, (input, target) in enumerate(test_loader):if use_cuda:input = input.cuda()c0, c1, c2, c3 = model1(input)output = np.concatenate([c0.data.cpu().numpy(),c1.data.cpu().numpy(),c2.data.cpu().numpy(),c3.data.cpu().numpy()], axis=1)c0, c1, c2, c3 = model1(input)output2 = np.concatenate([c0.data.cpu().numpy(),c1.data.cpu().numpy(),c2.data.cpu().numpy(),c3.data.cpu().numpy()], axis=1)test_pred.append(output+output2)test_pred = np.vstack(test_pred)if test_pred_tta is None:test_pred_tta = test_predelse:test_pred_tta += test_predreturn test_pred_tta

最后,在通过设置动态学习率,补充额外的数据增强方法和进行模型集成之后,预测得分达到了0.84。

这篇关于天池大赛——街景字符编码识别比赛(零基础入门CV赛事)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/579960

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列