LeetCode 2807. 在链表中插入最大公约数【链表,迭代,递归】1279

2024-01-07 08:04

本文主要是介绍LeetCode 2807. 在链表中插入最大公约数【链表,迭代,递归】1279,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你一个链表的头 head ,每个结点包含一个整数值。

在相邻结点之间,请你插入一个新的结点,结点值为这两个相邻结点值的 最大公约数

请你返回插入之后的链表。

两个数的 最大公约数 是可以被两个数字整除的最大正整数。

示例 1:

输入:head = [18,6,10,3]
输出:[18,6,6,2,10,1,3]
解释:第一幅图是一开始的链表,第二幅图是插入新结点后的图(蓝色结点为新插入结点)。
- 186 的最大公约数为 6 ,插入第一和第二个结点之间。
- 610 的最大公约数为 2 ,插入第二和第三个结点之间。
- 103 的最大公约数为 1 ,插入第三和第四个结点之间。
所有相邻结点之间都插入完毕,返回链表。

示例 2:

输入:head = [7]
输出:[7]
解释:第一幅图是一开始的链表,第二幅图是插入新结点后的图(蓝色结点为新插入结点)。
没有相邻结点,所以返回初始链表。

提示:

  • 链表中结点数目在 [1, 5000] 之间。
  • 1 <= Node.val <= 1000

解法 迭代

遍历链表,在当前节点 cur \textit{cur} cur 后面插入 g c d gcd gcd 节点,同时 gcd \textit{gcd} gcd 节点指向 cur \textit{cur} cur 的下一个节点。插入后, cur \textit{cur} cur 更新为 cur . next . next \textit{cur}.\textit{next}.\textit{next} cur.next.next ,也就是 c u r cur cur 原来的下一个节点,开始下一轮循环。循环直到 c u r cur cur 没有下一个节点为止。

// cpp
class Solution {
public:ListNode* insertGreatestCommonDivisors(ListNode* head) {for (auto cur = head; cur->next; cur = cur->next->next)cur->next = new ListNode(gcd(cur->val, cur->next->val), cur->next);return head;}
};
// java
class Solution {public ListNode insertGreatestCommonDivisors(ListNode head) {for (ListNode cur = head; cur.next != null; cur = cur.next.next) {cur.next = new ListNode(gcd(cur.val, cur.next.val), cur.next);}return head;}private int gcd(int a, int b) { while (a != 0) {int t = a;a = b % a;b = t;}return b;}
}
// python
class Solution:def insertGreatestCommonDivisors(self, head: Optional[ListNode]) -> Optional[ListNode]:cur = headwhile cur.next:cur.next = ListNode(gcd(cur.val, cur.next.val), cur.next)cur = cur.next.nextreturn head
// go
/*** Definition for singly-linked list.* type ListNode struct {*     Val int*     Next *ListNode* }*/
func insertGreatestCommonDivisors(head *ListNode) *ListNode {for cur := head; cur.Next != nil; cur = cur.Next.Next {cur.Next = &ListNode{gcd(cur.Val, cur.Next.Val), cur.Next}}return head
}
func gcd(a, b int) int {for a != 0 {a, b = b % a, a}return b
}
// rust
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//     ListNode {
//       next: None,
//       val
//     }
//   }
// }
impl Solution {pub fn insert_greatest_common_divisors(mut head: Option<Box<ListNode>>) -> Option<Box<ListNode>> {let mut cur = &mut head;while cur.as_ref().unwrap().next.is_some() {let x = cur.as_mut().unwrap();let next = x.next.take();x.next = Some(Box::new(ListNode {val: Self::gcd(x.val, next.as_ref().unwrap().val),next,}));cur = &mut cur.as_mut().unwrap().next.as_mut().unwrap().next;}head}fn gcd(mut a: i32, mut b: i32) -> i32 {while a != 0 {(a, b) = (b % a, a);}b}
}

复杂度分析:

  • 时间复杂度: O ( n log ⁡ ⁡ U ) \mathcal{O}(n\log⁡U) O(nlogU) ,其中 n n n 为链表长度, U U U 为节点值的最大值。每次计算 g c d gcd gcd 需要 O ( log ⁡ ⁡ U ) \mathcal{O}(\log⁡U) O(logU) 的时间。
  • 空间复杂度: O ( 1 ) \mathcal{O}(1) O(1) 。返回值的空间不计入。

这篇关于LeetCode 2807. 在链表中插入最大公约数【链表,迭代,递归】1279的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/579266

相关文章

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock