【本科生通信原理】【实验报告】【北京航空航天大学】实验四:模拟信号的数字化及编码

本文主要是介绍【本科生通信原理】【实验报告】【北京航空航天大学】实验四:模拟信号的数字化及编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 一、实验目的
    • 二、实验内容
    • 三、实验程序
    • 四、实验结果
    • 五、实验分析
    • 六、参考文献

一、实验目的

1、掌握低通信号的抽样重建过程;
2、掌握PCM编码译码过程。

二、实验内容

2问:
在这里插入图片描述在这里插入图片描述

三、实验程序

1、

function q1()
dt = 0.001;  % 时间分辨率
t = -8 * pi : dt : 8 * pi;  % 时间向量
x_t = cos(0.15 * pi * t) + sin(2.5 * pi * t) + cos(4 * pi * t);  
% 低通信号
[f, x_f] = F(t, x_t);
fs = 4;  % 采样速率
sdt = 1 / fs;  % 采样间隔
t1 = -8 * pi : sdt : 8 * pi;
st = cos(0.15 * pi * t1) + sin(2.5 * pi * t1) + cos(4 * pi * t1);  
% 采样信号
[f1, sf] = F(t1, st);% 恢复原始信号
t2 = -50 : dt : 50;
gt = sinc(fs * t2);
stt = sigexpand(st, sdt / dt);
xt_t = conv(stt, gt);  % 恢复信号
t3 = -50 : dt : 60 + sdt - dt;figure;  % 画出该低通信号的波形
plot(t, x_t);
xlabel('t/s');
ylabel('x(t)');
title('低通信号x(t)的波形');
grid on;
axis([-8 * pi 8 * pi -3 3]);figure;  % 画出抽样序列,抽样速率为4Hz
plot(t1, st);
xlabel('t/s');
ylabel('x_s(t)');
title('抽样速率为4Hz的抽样序列');
grid on;
axis([-8 * pi 8 * pi -2.5 2.5]);figure;  % 画出抽样序列恢复出的原始信号
plot(t3, xt_t(1 : length(t3)));
xlabel('t/s');
ylabel('x\^(t)');
title('抽样序列恢复出的原始信号');
axis([0 50 -2.5 2.5])
grid on;

2、

function q2()
dt = 0.001; % 时间分辨率
t = -4 * pi : dt : 4 * pi;  % 时间向量
xt = sin(2 * pi * t);  % 低通信号
fs = 20;  % 采样频率
sdt = 1 / fs; % 采样间隔
t1 = -4 * pi : sdt : 4 * pi;  % 采样时间向量
st = sin(2 * pi * t1);  % 采样信号ct = [];
Dt = [];
for i = 1 : length(t1)  % 对每一个采样点进行迭代mt = st(i) / 1 * 4096;  % 转化为量化电平bt = pcm_encode(mt);  % 进行pcm编码ct = cat(2, bt, ct);dt = pcm_decode(bt, 1);  % 进行pcm解码Dt(i) = dt;
end
c1 = [];
for j = 1 : 50if ct(j) == 0c = zeros(1, 20);elseif ct(j) == 1c = ones(1, 20);endc1 = [c1 c];
endfigure;  % 画出未编码波形
plot(t1, st);
xlabel('t/s');
ylabel('x_s(t)');
title('未编码波形');
grid on;
axis([-4 * pi 4 * pi -1 1]);figure;  % 画出PCM编码后的波形
plot(t1, c1(1 : length(t1)));
xlabel('t/s');
ylabel('PCM(t)');
title('经过PCM编码的波形');
grid on;
axis([-12 10 -0.1 1.1]);figure;  %画出译码后的波形
plot(t1, Dt);
xlabel('t/s');
ylabel('x\^(t)');
title('译码后的波形');
grid on;
axis([-4 * pi 4 * pi -1 1]);function q2_2()
cnt = -70 : 1 : 0;
for i = 1 : length(cnt)Ac = 10 ^ (cnt(i) / 20);  % dB的转换r(i) = PCM(Ac);
end
plot(cnt, 10 * log10(r));
grid on;
xlabel('A_c^2/A_0^2');
ylabel('r/dB');
title('量化信噪比与SNR的关系曲线');
end

程序中用到的子函数:

1、

function [f, sf] = F(t, st)
%利用fft, fftshift定义函数F计算信号的傅里叶变换
%t-离散时间
%st-离散信号
dt = t(2) - t(1); %时间分辨率
T = t(end);
df = 1 / T; %频率分辨率
N = length(st); %离散傅里叶变换长度
f = -N / 2 * df : df : N / 2 * df - df;
sf = fft(st);
sf = T / N * fftshift(sf);

2、

function [out] = sigexpand(d, M)
%将输入的序列扩展为间隔为N – 1个0的序列
%M:系统采样频率
%d:输入的二进制代码
%out:为1 * (M * length(d))维的矩阵
N = length(d);
out = zeros(M, N);
out(1, :) = d;
out = reshape(out, 1, M * N);
end

3、

function [out] = PCM(Ac)
v = 1;  % 过载电平
t = 0 : 0.01 : 10;
s = Ac * sin(2 * pi * t);  % 抽样序列
y = floor(s / v * 4096);  % 信号值转化为量化单位
pcm_en = pcm_encode(y);  % pcm编码
pcm_de = pcm_decode(pcm_en, v);  % pcm译码
Nq = mean((s - pcm_de).^2);  % 计算量化噪声功率
S = mean(s .^ 2);  % 计算信号平均功率
out = S / Nq;
end

4、

function [out] = pcm_encode(x)
% 输入x参数为0~4096的样值,输出out为8位二进制码
n = length(x);
for i = 1 : n% 编写段落码if x(i) > 0out(i, 1) = 1;elseout(i, 1) = 0;end% 编写段内码计算量化间隔和量化起始电平if abs(x(i)) > 0 && abs(x(i)) < 32%段落码out(i, 2) = 0;out(i, 3) = 0;out(i, 4) = 0;% 量化间隔step = 2;%起始电平st = 0;elseif 32 <= abs(x(i)) && abs(x(i)) < 64out(i, 2) = 0;out(i, 3) = 0;out(i, 4) = 1;step = 2;st = 32;elseif 64 <= abs(x(i)) & abs(x(i)) < 128out(i, 2) = 0;out(i, 3) = 1;out(i, 4) = 0;step = 4;st = 64;elseif 128 <= abs(x(i)) & abs(x(i)) < 256out(i, 2) = 0;out(i, 3) = 1;out(i, 4) = 1;step = 8;st = 128;elseif 256 <= abs(x(i)) & abs(x(i)) < 512out(i, 2) = 1;out(i, 3) = 0;out(i, 4) = 0;step = 16;st = 256;elseif 512 <= abs(x(i)) & abs(x(i)) < 1024out(i, 2) = 1;out(i, 3) = 0;out(i, 4) = 1;step = 32;st = 512;elseif 1024 <= abs(x(i)) & abs(x(i)) < 2048out(i, 2) = 1;out(i, 3) = 1;out(i, 4) = 0;step = 64;st = 1024;elseif 2048 <= abs(x(i)) & abs(x(i)) < 4096out(i, 2) = 1;out(i, 3) = 1;out(i, 4) = 1;step = 128;st = 2048;elseout(i, 2) = 1;out(i, 3) = 1;out(i, 4) = 1;step = 128;st = 2048;endif(abs(x(i)) >= 4096)% 处理过载现象out(i, 2: 8) = [1 1 1 1 1 1 1];else% 计算段落码tmp = floor((abs(x(i)) - st) / step);t = dec2bin(tmp, 4) - 48;out(i, 5 : 8) = t(1 : 4);end
end
out = reshape(out', 1, 8 * n);

5、

function [out] = pcm_decode(in, v)
% 输入in为8位二进制码,(-v, +v)为量化区间
n = length(in);
in = reshape(in', 8, n / 8)';
slot(1) = 0;
slot(2) = 32;
slot(3) = 64;
slot(4) = 128;
slot(5) = 256;
slot(6) = 512;
slot(7) = 1024;
slot(8) = 2048;
step(1) = 2;
step(2) = 2;
step(3) = 4;
step(4) = 8;
step(5) = 16;
step(6) = 32;
step(7) = 64;
step(8) = 128;
for i = 1 : n / 8ss = 2 * in(i, 1) - 1;tmp = in(i, 2) * 4 + in(i, 3) * 2 + in(i, 4) + 1;st = slot(tmp);dt = (in(i, 5) * 8 + in(i, 6) * 4 + in(i, 7) * 2 + in(i, 8)) * step(tmp) + 0.5 * step(tmp);out(i) = ss * (st + dt) / 4096 * v;
end

四、实验结果

1、
(1)、低通信号x(t)的波形:
在这里插入图片描述

图1
(2)、抽样速率为4Hz的抽样序列:
在这里插入图片描述

图2
(3)、抽样序列恢复出的原始信号:
在这里插入图片描述

图3
2、
(1)、未编码的波形:
在这里插入图片描述

图4
(2)、经过PCM编码后的波形(部分,由于采样点数太多导致无法全部画完):
在这里插入图片描述

图5
(3)、译码后的波形:
在这里插入图片描述

图6
(4)、不同幅度Ac情况下,PCM译码后的量化信噪比:
在这里插入图片描述

图7

五、实验分析

在这里插入图片描述
在这里插入图片描述

六、参考文献

1、《通信原理(第7版)》,樊昌信 曹丽娜 编著,北京,国防工业出版社,2022年1月。

2、《信号与系统(第二版)》,【美】Alan V. Oppenheim 等 著,刘树棠 译,北京,电子工业出版社,2020年8月。

这篇关于【本科生通信原理】【实验报告】【北京航空航天大学】实验四:模拟信号的数字化及编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/577330

相关文章

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr