【本科生通信原理】【实验报告】【北京航空航天大学】实验一:通信原理初步

本文主要是介绍【本科生通信原理】【实验报告】【北京航空航天大学】实验一:通信原理初步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实验目的:

  1. 熟悉 MATLAB开发环境、掌握 MATLAB基本运算操作;
  2. 熟悉和了解 MATLAB图形绘制基本指令;
  3. 熟悉使用 MATLAB分析信号频谱的过程;
  4. 掌握加性白高斯噪声信道模型

二、实验内容:

在这里插入图片描述

三、实验程序:
1、

function q1()
x = 0 : 0.0001 : 2 * pi;
y1 = 2 * exp(-0.5 * x);
y2 = cos(4 * pi * x);
figure;
plot(x, y1);
hold;
plot(x, y2);
xlabel("x", "FontName", "Times New Roman", "FontSize", 12);
ylabel("y", "FontName", "Times New Roman", "FontSize", 12);
legend("FontName","Times New Roman", "FontSize", 10, "LineWidth", 1.5);
legend("y1", "y2");
title("q1");
axis([0 2 * pi -1.1 2.1]);
grid;

2、

function q2()
x = 0 : 0.01 : 10;  % 横坐标区间
R = normrnd(0, sqrt(0.1), 1, length(x));  % 生成1 * length(x)个正态随机数figure;  % 画信号波形
plot(x, R);
grid on;
title('White Gaussian Noise');
xlabel('x');
ylabel('N');figure;  % 画序列柱状图
bar(R);
grid on;
title('Bar Graph of Noise Sequence');
xlabel('n');
ylabel('N');

3、

function q3()
N = 1024;  %采样点数
ts = 0.6 / 1023;  %系统时域采样间隔
fs = 1 / ts;  %系统采样频率
df = 0.001;  %所需的频率分辨率
t = 0 : ts: 0.6;
x = 0.4 * sin(100 * pi * t) + 0.4 * sin(640 * pi * t);
n = randn(1, N);  % 噪声信号(噪声方差为1)
y = x + n;  % 原始信号叠加噪声信号
[Y, m, df1, f] = T2F(y, ts, df, fs);figure;  % 画信号时域波形图
plot(t, y);
grid on;
title('信号时域波形图');
xlabel('t/s');
ylabel('y(t)');figure;  % 画信号频谱图
plot(f, abs(Y));
grid on;
title('信号频谱图');
xlabel('w');
ylabel('Y(w)');

4、

function q4()
% AM调制解调
echo on;
N = 1024;  % 采样点数
A = 3;  % 直流分量
fc = 125;  %载波频率
t0 = 0.6;  %信号持续时间
snr = 10;  %解调器输入信噪比dB
dt = 0.6 / 1023;  %系统时域采样间隔
fs = 1 / dt;  %系统采样频率
df = 0.001;  %所需的频率分辨率
t = 0 : dt : t0;
m = 0.1 * cos(15 * pi * t) + 1.5 * sin(25 * pi * t) + 0.5 * cos(40 * pi * t);  %调制信号
c = cos(250 * pi * t);  %载波
Lt = length(t);  %仿真过程中,信号长度
snr_lin = 10 ^ (snr / 10);  %信噪比
L = 2 * min(m);
R = 2 * max(abs(m)) + A;
[M, m, df1, f] = T2F(m, dt, df, fs);  %求出调制信号频谱
[Bw_eq] = signalband(M, df, t0);  %求出信号等效带宽
u = (A + m(1 : Lt)) .* c(1 : Lt);  % 已调信号
[U, u, df1, f] = T2F(u, dt, df, fs);
signal_power = power_x(u(1 : Lt));  %已调信号的平均功率
noise_power = (signal_power * fs) / (snr_lin * (2 * Bw_eq));  %求出噪声方差(噪声均值为0)
noise_std = sqrt(noise_power);  %噪声标准差
noise = noise_std * randn(1, Lt);  %产生噪声
sam = u(1 : Lt) + noise(1 : Lt);  %叠加了噪声的已调信号
[SAM, sam, df1, f] = T2F(sam, dt, df, fs);  %求出叠加了噪声的已调信号频谱figure;  % 画出经过信道前的已调信号时域波形
plot(t, u(1 : length(t)));
grid on;
title('经过AWGN信道前的已调信号的时域波形图');
xlabel('t');
ylabel('u(t)');figure;  %画出经过信道前的已调信号频谱图
plot(f, abs(fftshift(U)));
grid on;
title('经过AWGN信道前的已调信号的频谱图');
xlabel('w');
ylabel('U(w)');figure;  %画出经过信道后的已调信号时域波形
plot(t, sam(1 : length(t)));
axis([0 t0 -20 20]);
grid on;
title('经过AWGN信道后的已调信号的时域波形图');
xlabel('t');
ylabel('s(t)');figure;  %画出经过信道后的已调信号频谱图
plot(f, abs(fftshift(SAM)));
grid on;
title('经过AWGN信道后的已调信号的时域波形图');
xlabel('w');
ylabel('S(w)');

四、实验结果:
1、
在这里插入图片描述

2、
(1)、信号波形:
在这里插入图片描述

(2)、序列柱状图:
在这里插入图片描述

3、
(1)、所得信号的时域波形图:
在这里插入图片描述

(2)、所得信号的频谱图:
在这里插入图片描述

4、
(1)、经过AWGN信道前的已调信号的时域波形图:
在这里插入图片描述

(2)、经过AWGN信道前的已调信号的频谱:
在这里插入图片描述

(3)、经过AWGN信道后的已调信号的时域波形图:
在这里插入图片描述

(4)、经过AWGN信道后的已调信号的频谱图:
在这里插入图片描述

五、实验分析:
1、求离散时间信号傅里叶变换:

function [f, sf] = F(t, st)
%利用fft,fftshift定义函数F计算信号的傅里叶变换
%t-离散时间
%st-离散信号
dt = t(2) - t(1); %时间分辨率
T = t(end);
df = 1 / T; %频率分辨率
N = length(st); %离散傅里叶变换长度
f = -N / 2 * df : df : N / 2 * df - df;
sf = fft(st);
sf = T / N * fftshift(sf);

2、求信号平均功率:

function p = power_x(x)
%x:输入信号
%p:返回信号的x功率
p = (norm(x) .^ 2) ./ length(x);

3、求信号等效带宽:

function [Bw_eq] = signalband(sf, df, T)
%计算信号等效带宽
%sf:信号频谱
%df:频谱分辨率
%T:信号持续时间
sf_max = max(abs(sf));
Bw_eq = sum(abs(sf) .^ 2) * df / T / sf_max .^ 2;

4、序列的傅里叶变换

function [M, m, df] = fftseq(m, ts, df)fs = 1 / ts;
if nargin == 2n1 = 0;
elsen1 = fs / df;
end
n2 = length(m);
n = 2 ^ (max(nextpow2(n1), nextpow2(n2)));
M = fft(m, n);
m = [m, zeros(1, n - n2)];
df = fs / n;

5、信号从时域转换到频域

function [M, m, df1, f]=T2F(m, ts, df, fs)
%-----------------输入参数
%m: 信号
%ts: 系统时域采样间隔
%df: 所需的频率分辨率
%fs: 系统采样频率%-----------------输出参数
%M: 傅里叶变换后的频谱序列
%m: 输入信号参与过傅里叶变换后对应的序列,补零后的输入信号,长度与M,f相同
%df1: 返回的频率分辨率
%f: 与M相对应的频率序列
[M, m, df1] = fftseq(m, ts, df);
f = [0 : df1 : df1 * (length(m) - 1)] - fs / 2;  %频率向量
M = M / fs;

这篇关于【本科生通信原理】【实验报告】【北京航空航天大学】实验一:通信原理初步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576539

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R