C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片

本文主要是介绍C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

效果

生成图片特征

查找踢足球的人

测试图片

模型信息

image_model.onnx

text_model.onnx

项目

代码

Form1.cs

Clip.cs

下载


C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片

效果

生成图片特征

查找踢足球的人

测试图片

模型信息

image_model.onnx

Inputs
-------------------------
name:image
tensor:Float[1, 3, 224, 224]
---------------------------------------------------------------

Outputs
-------------------------
name:unnorm_image_features
tensor:Float[1, 512]
---------------------------------------------------------------

text_model.onnx

Inputs
-------------------------
name:text
tensor:Int64[1, 52]
---------------------------------------------------------------

Outputs
-------------------------
name:unnorm_text_features
tensor:Float[1, 512]
---------------------------------------------------------------

项目

代码

Form1.cs


using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        Clip mynet = new Clip("model/image_model.onnx", "model/text_model.onnx", "model/myvocab.txt");

        float[] imagedir_features;
        string image_dir = "test_img";
        StringBuilder sb = new StringBuilder();

        private void button2_Click(object sender, EventArgs e)
        {
            //特征向量 可以存二进制文件或者向量数据库
            imagedir_features = mynet.generate_imagedir_features(image_dir);
            txtInfo.Text = "生成完成!";
            txtInfo.Text += "有" + mynet.imgnum + "张图片,特征向量长度=" + imagedir_features.Length;
        }

        private void button3_Click(object sender, EventArgs e)
        {
            if (imagedir_features == null)
            {
                MessageBox.Show("请先生成图片特征!");
                return;
            }

            sb.Clear();
            txtInfo.Text = "";
            lblInfo.Text = "";
            pictureBox1.Image = null;

            string input_text = txt_input_text.Text;
            if (string.IsNullOrEmpty(input_text))
            {
                return;
            }
            List<Dictionary<string, float>> top5imglist = mynet.input_text_search_image(input_text, imagedir_features, mynet.imglist);

            sb.AppendLine("top5:");
            foreach (var item in top5imglist)
            {
                sb.AppendLine(Path.GetFileName(item.Keys.First()) + "  相似度:" + item[item.Keys.First()].ToString("F2"));
            }

            txtInfo.Text = sb.ToString();
            lblInfo.Text = Path.GetFileName(top5imglist[0].Keys.First());
            pictureBox1.Image = new Bitmap(top5imglist[0].Keys.First());

        }

        private void Form1_Load(object sender, EventArgs e)
        {

        }
    }
}


using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}Clip mynet = new Clip("model/image_model.onnx", "model/text_model.onnx", "model/myvocab.txt");float[] imagedir_features;string image_dir = "test_img";StringBuilder sb = new StringBuilder();private void button2_Click(object sender, EventArgs e){//特征向量 可以存二进制文件或者向量数据库imagedir_features = mynet.generate_imagedir_features(image_dir);txtInfo.Text = "生成完成!";txtInfo.Text += "有" + mynet.imgnum + "张图片,特征向量长度=" + imagedir_features.Length;}private void button3_Click(object sender, EventArgs e){if (imagedir_features == null){MessageBox.Show("请先生成图片特征!");return;}sb.Clear();txtInfo.Text = "";lblInfo.Text = "";pictureBox1.Image = null;string input_text = txt_input_text.Text;if (string.IsNullOrEmpty(input_text)){return;}List<Dictionary<string, float>> top5imglist = mynet.input_text_search_image(input_text, imagedir_features, mynet.imglist);sb.AppendLine("top5:");foreach (var item in top5imglist){sb.AppendLine(Path.GetFileName(item.Keys.First()) + "  相似度:" + item[item.Keys.First()].ToString("F2"));}txtInfo.Text = sb.ToString();lblInfo.Text = Path.GetFileName(top5imglist[0].Keys.First());pictureBox1.Image = new Bitmap(top5imglist[0].Keys.First());}private void Form1_Load(object sender, EventArgs e){}}
}

Clip.cs

public class Clip
    {
        int inpWidth = 224;
        int inpHeight = 224;
        float[] mean = new float[] { 0.48145466f, 0.4578275f, 0.40821073f };
        float[] std = new float[] { 0.26862954f, 0.26130258f, 0.27577711f };

        int context_length = 52;
        int len_text_feature = 512;

        Net net;
        float[] image_features_input;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<long> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;

        TokenizerBase tokenizer;

        int[] text_tokens_input;
        float[,] text_features_input;

        public int imgnum = 0;
        public List<string> imglist = new List<string>();

        public Clip(string image_modelpath, string text_modelpath, string vocab_path)
        {
            net = CvDnn.ReadNetFromOnnx(image_modelpath);

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(text_modelpath, options);//model_path 为onnx模型文件的路径
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            load_tokenizer(vocab_path);

        }

        void load_tokenizer(string vocab_path)
        {

            tokenizer = new TokenizerClipChinese();
            tokenizer.load_tokenize(vocab_path);
            text_tokens_input = new int[1024 * context_length];
        }

        Mat normalize_(Mat src)
        {
            Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);

            Mat[] bgr = src.Split();
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);
            }

            Cv2.Merge(bgr, src);

            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }

            return src;
        }

        unsafe void generate_image_feature(Mat srcimg)
        {
            Mat temp_image = new Mat();
            Cv2.Resize(srcimg, temp_image, new Size(inpWidth, inpHeight), 0, 0, InterpolationFlags.Cubic);
            Mat normalized_mat = normalize_(temp_image);
            Mat blob = CvDnn.BlobFromImage(normalized_mat);
            net.SetInput(blob);
            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();
            net.Forward(outs, outBlobNames);
            float* ptr_feat = (float*)outs[0].Data;
            int len_image_feature = outs[0].Size(1);  //忽略第0维batchsize=1, len_image_feature是定值512,跟len_text_feature相等的, 也可以写死在类成员变量里
            image_features_input = new float[len_image_feature];
            float norm = 0.0f;
            for (int i = 0; i < len_image_feature; i++)
            {
                norm += ptr_feat[i] * ptr_feat[i];
            }
            norm = (float)Math.Sqrt(norm);
            for (int i = 0; i < len_image_feature; i++)
            {
                image_features_input[i] = ptr_feat[i] / norm;
            }
        }

        unsafe void generate_text_feature(List<string> texts)
        {
            List<List<int>> text_token = new List<List<int>>(texts.Count);
            for (int i = 0; i < texts.Count; i++)
            {
                text_token.Add(new List<int>());
            }

            for (int i = 0; i < texts.Count; i++)
            {
                tokenizer.encode_text(texts[i], text_token[i]);
            }

            if (text_token.Count * context_length > text_tokens_input.Length)
            {
                text_tokens_input = new int[text_token.Count * context_length];
            }

            foreach (int i in text_tokens_input) { text_tokens_input[i] = 0; }

            for (int i = 0; i < text_token.Count; i++)
            {
                if (text_token[i].Count > context_length)
                {
                    Console.WriteLine("text_features index " + i + " ,bigger than " + context_length + "\n");
                    continue;
                }
                for (int j = 0; j < text_token[i].Count; j++)
                {
                    text_tokens_input[i * context_length + j] = text_token[i][j];
                }

            }

            int[] text_token_shape = new int[] { 1, context_length };

            text_features_input = new float[text_token.Count, len_text_feature];

            long[] text_tokens_input_64 = new long[texts.Count * context_length];
            for (int i = 0; i < text_tokens_input_64.Length; i++)
            {
                text_tokens_input_64[i] = text_tokens_input[i];
            }

            for (int i = 0; i < text_token.Count; i++)
            {
                input_tensor = new DenseTensor<long>(text_tokens_input_64, new[] { 1, 52 });
                input_container.Clear();
                input_container.Add(NamedOnnxValue.CreateFromTensor("text", input_tensor));

                //运行 Inference 并获取结果
                result_infer = onnx_session.Run(input_container);

                // 将输出结果转为DisposableNamedOnnxValue数组
                results_onnxvalue = result_infer.ToArray();

                // 读取第一个节点输出并转为Tensor数据
                result_tensors = results_onnxvalue[0].AsTensor<float>();

                float[] text_feature_ptr = results_onnxvalue[0].AsTensor<float>().ToArray();

                float norm = 0.0f;
                for (int j = 0; j < len_text_feature; j++)
                {
                    norm += text_feature_ptr[j] * text_feature_ptr[j];
                }
                norm = (float)Math.Sqrt(norm);
                for (int j = 0; j < len_text_feature; j++)
                {
                    text_features_input[i, j] = text_feature_ptr[j] / norm;
                }

            }
        }

        void softmax(float[] input)
        {
            int length = input.Length;
            float[] exp_x = new float[length];
            float maxVal = input.Max();
            float sum = 0;
            for (int i = 0; i < length; i++)
            {
                float expval = (float)Math.Exp(input[i] - maxVal);
                exp_x[i] = expval;
                sum += expval;
            }
            for (int i = 0; i < length; i++)
            {
                input[i] = exp_x[i] / sum;
            }
        }

        int[] argsort_ascend(float[] array)
        {
            int array_len = array.Length;
            int[] array_index = new int[array_len];
            for (int i = 0; i < array_len; ++i)
            {
                array_index[i] = i;
            }

            var temp = array_index.ToList();

            temp.Sort((pos1, pos2) =>
             {

                 if (array[pos1] < array[pos2])
                 {
                     return -1;
                 }
                 else if (array[pos1] == array[pos2])
                 {
                     return 0;
                 }
                 else
                 {
                     return 0;
                 }

             });

            return temp.ToArray();
        }

        public List<Dictionary<string, float>> input_text_search_image(string text, float[] image_features, List<string> imglist)
        {

            int imgnum = imglist.Count;
            List<string> texts = new List<string> { text };

            generate_text_feature(texts);

            float[] logits_per_image = new float[imgnum];

            for (int i = 0; i < imgnum; i++)
            {
                float sum = 0;
                for (int j = 0; j < len_text_feature; j++)
                {
                    sum += image_features[i * len_text_feature + j] * text_features_input[0, j]; //图片特征向量跟文本特征向量做内积
                }
                logits_per_image[i] = 100 * sum;
            }

            softmax(logits_per_image);

            int[] index = argsort_ascend(logits_per_image);

            List<Dictionary<string, float>> top5imglist = new List<Dictionary<string, float>>(5);

            for (int i = 0; i < 5; i++)
            {
                int ind = index[imgnum - 1 - i];
                Dictionary<string, float> result = new Dictionary<string, float>();
                result.Add(imglist[ind], logits_per_image[ind]);
                top5imglist.Add(result);
            }
            return top5imglist;
        }

        public float[] generate_imagedir_features(string image_dir)
        {

            imglist = Common.listdir(image_dir);
            imgnum = imglist.Count;
            Console.WriteLine("遍历到" + imgnum + "张图片");

            float[] imagedir_features = new float[0];

            for (int i = 0; i < imgnum; i++)
            {
                string imgpath = imglist[i];

                Mat srcimg = Cv2.ImRead(imgpath);

                generate_image_feature(srcimg);

                imagedir_features = imagedir_features.Concat(image_features_input).ToArray();

                srcimg.Dispose();
            }

            return imagedir_features;

        }

    }

public class Clip{int inpWidth = 224;int inpHeight = 224;float[] mean = new float[] { 0.48145466f, 0.4578275f, 0.40821073f };float[] std = new float[] { 0.26862954f, 0.26130258f, 0.27577711f };int context_length = 52;int len_text_feature = 512;Net net;float[] image_features_input;SessionOptions options;InferenceSession onnx_session;Tensor<long> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;TokenizerBase tokenizer;int[] text_tokens_input;float[,] text_features_input;public int imgnum = 0;public List<string> imglist = new List<string>();public Clip(string image_modelpath, string text_modelpath, string vocab_path){net = CvDnn.ReadNetFromOnnx(image_modelpath);// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(text_modelpath, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();load_tokenizer(vocab_path);}void load_tokenizer(string vocab_path){tokenizer = new TokenizerClipChinese();tokenizer.load_tokenize(vocab_path);text_tokens_input = new int[1024 * context_length];}Mat normalize_(Mat src){Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);Mat[] bgr = src.Split();for (int i = 0; i < bgr.Length; ++i){bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);}Cv2.Merge(bgr, src);foreach (Mat channel in bgr){channel.Dispose();}return src;}unsafe void generate_image_feature(Mat srcimg){Mat temp_image = new Mat();Cv2.Resize(srcimg, temp_image, new Size(inpWidth, inpHeight), 0, 0, InterpolationFlags.Cubic);Mat normalized_mat = normalize_(temp_image);Mat blob = CvDnn.BlobFromImage(normalized_mat);net.SetInput(blob);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();net.Forward(outs, outBlobNames);float* ptr_feat = (float*)outs[0].Data;int len_image_feature = outs[0].Size(1);  //忽略第0维batchsize=1, len_image_feature是定值512,跟len_text_feature相等的, 也可以写死在类成员变量里image_features_input = new float[len_image_feature];float norm = 0.0f;for (int i = 0; i < len_image_feature; i++){norm += ptr_feat[i] * ptr_feat[i];}norm = (float)Math.Sqrt(norm);for (int i = 0; i < len_image_feature; i++){image_features_input[i] = ptr_feat[i] / norm;}}unsafe void generate_text_feature(List<string> texts){List<List<int>> text_token = new List<List<int>>(texts.Count);for (int i = 0; i < texts.Count; i++){text_token.Add(new List<int>());}for (int i = 0; i < texts.Count; i++){tokenizer.encode_text(texts[i], text_token[i]);}if (text_token.Count * context_length > text_tokens_input.Length){text_tokens_input = new int[text_token.Count * context_length];}foreach (int i in text_tokens_input) { text_tokens_input[i] = 0; }for (int i = 0; i < text_token.Count; i++){if (text_token[i].Count > context_length){Console.WriteLine("text_features index " + i + " ,bigger than " + context_length + "\n");continue;}for (int j = 0; j < text_token[i].Count; j++){text_tokens_input[i * context_length + j] = text_token[i][j];}}int[] text_token_shape = new int[] { 1, context_length };text_features_input = new float[text_token.Count, len_text_feature];long[] text_tokens_input_64 = new long[texts.Count * context_length];for (int i = 0; i < text_tokens_input_64.Length; i++){text_tokens_input_64[i] = text_tokens_input[i];}for (int i = 0; i < text_token.Count; i++){input_tensor = new DenseTensor<long>(text_tokens_input_64, new[] { 1, 52 });input_container.Clear();input_container.Add(NamedOnnxValue.CreateFromTensor("text", input_tensor));//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();float[] text_feature_ptr = results_onnxvalue[0].AsTensor<float>().ToArray();float norm = 0.0f;for (int j = 0; j < len_text_feature; j++){norm += text_feature_ptr[j] * text_feature_ptr[j];}norm = (float)Math.Sqrt(norm);for (int j = 0; j < len_text_feature; j++){text_features_input[i, j] = text_feature_ptr[j] / norm;}}}void softmax(float[] input){int length = input.Length;float[] exp_x = new float[length];float maxVal = input.Max();float sum = 0;for (int i = 0; i < length; i++){float expval = (float)Math.Exp(input[i] - maxVal);exp_x[i] = expval;sum += expval;}for (int i = 0; i < length; i++){input[i] = exp_x[i] / sum;}}int[] argsort_ascend(float[] array){int array_len = array.Length;int[] array_index = new int[array_len];for (int i = 0; i < array_len; ++i){array_index[i] = i;}var temp = array_index.ToList();temp.Sort((pos1, pos2) =>{if (array[pos1] < array[pos2]){return -1;}else if (array[pos1] == array[pos2]){return 0;}else{return 0;}});return temp.ToArray();}public List<Dictionary<string, float>> input_text_search_image(string text, float[] image_features, List<string> imglist){int imgnum = imglist.Count;List<string> texts = new List<string> { text };generate_text_feature(texts);float[] logits_per_image = new float[imgnum];for (int i = 0; i < imgnum; i++){float sum = 0;for (int j = 0; j < len_text_feature; j++){sum += image_features[i * len_text_feature + j] * text_features_input[0, j]; //图片特征向量跟文本特征向量做内积}logits_per_image[i] = 100 * sum;}softmax(logits_per_image);int[] index = argsort_ascend(logits_per_image);List<Dictionary<string, float>> top5imglist = new List<Dictionary<string, float>>(5);for (int i = 0; i < 5; i++){int ind = index[imgnum - 1 - i];Dictionary<string, float> result = new Dictionary<string, float>();result.Add(imglist[ind], logits_per_image[ind]);top5imglist.Add(result);}return top5imglist;}public float[] generate_imagedir_features(string image_dir){imglist = Common.listdir(image_dir);imgnum = imglist.Count;Console.WriteLine("遍历到" + imgnum + "张图片");float[] imagedir_features = new float[0];for (int i = 0; i < imgnum; i++){string imgpath = imglist[i];Mat srcimg = Cv2.ImRead(imgpath);generate_image_feature(srcimg);imagedir_features = imagedir_features.Concat(image_features_input).ToArray();srcimg.Dispose();}return imagedir_features;}}

下载

源码下载

这篇关于C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575678

相关文章

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne