imgaug库指南(五):从入门到精通的【图像增强】之旅

2024-01-06 04:20

本文主要是介绍imgaug库指南(五):从入门到精通的【图像增强】之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 中值模糊/滤波


中值模糊/滤波(AverageBlur)

功能介绍

iaa.MedianBlur是imgaug库中的一个方法,用于对图像进行中值模糊。中值模糊是一种非线性滤波方法,主要用于消除图像中的噪声。对于一些特定的噪声类型,如盐与胡椒噪声,中值模糊通常能取得较好的效果。

语法

iaa.MedianBlur方法的基本语法如下:

import imgaug.augmenters as iaa
aug = iaa.MedianBlur(k=(3, 11))
  • k为整数,那么卷积核的核大小为k;
  • k为包含两个整数的元组 (a, b),核大小将从 [a…b] 区间中随机采样一个奇数;
  • k为包含 两个整数元组 的元组 ((a, b), (c, d)),则每张图像将从 [a…b] 区间中采样随机核高度,从 [c…d] 区间中采样随机核宽度;

示例代码

  1. 使用不同卷积核大小
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建均值模糊增强器
aug1 = iaa.MedianBlur(k=3)
aug2 = iaa.MedianBlur(k=7)
aug3 = iaa.MedianBlur(k=15)# 对图像进行均值模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及中值模糊/滤波结果可视化

  1. 利用中值滤波清除椒盐噪声
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)## 对lena图像添加椒盐噪声
# 10%像素添加椒盐噪声
aug_noise1 = iaa.SaltAndPepper(0.1, per_channel=True)
# 30%像素添加椒盐噪声
aug_noise2 = iaa.SaltAndPepper(0.3, per_channel=True)
# 50%像素添加椒盐噪声
aug_noise3 = iaa.SaltAndPepper(0.5, per_channel=True)# 创建均值模糊增强器
aug1 = iaa.MedianBlur(k=3)# 对图像进行均值模糊处理
noised_image1 = aug_noise1(image=image)
noised_image2 = aug_noise2(image=image)
noised_image3 = aug_noise3(image=image)denoised_image1 = aug1(image=noised_image1)
denoised_image2 = aug1(image=noised_image2)
denoised_image3 = aug1(image=noised_image3)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
axes[0][0].imshow(noised_image1)
axes[0][0].set_title("Noised Image1")
axes[0][1].imshow(noised_image2)
axes[0][1].set_title("Noised Image2")
axes[0][2].imshow(noised_image3)
axes[0][2].set_title("Noised Image3")
axes[1][0].imshow(denoised_image1)
axes[1][0].set_title("Denoised Image1")
axes[1][1].imshow(denoised_image2)
axes[1][1].set_title("Denoised Image2")
axes[1][2].imshow(denoised_image3)
axes[1][2].set_title("Denoised Image3")
plt.show()

运行结果如下:

图2 椒盐噪声图像及其去噪图像可视化

注意事项

  1. 核大小的选择:中值模糊的效果很大程度上取决于所选择的核大小。在大多数情况下,选择奇数大小的核(如3, 5, 7等)是比较好的。核大小的选择需要权衡模糊程度和细节保留。
  2. 计算效率:对于较大的图像,中值模糊可能会比较耗时,因为它需要对每个像素周围的区域进行排序。
  3. 与其他增强器的结合使用imgaug库提供了许多其他图像增强方法,可以与中值模糊结合使用以获得更丰富的效果。例如,可以与亮度调整、对比度调整、噪声添加等增强器结合使用。
  4. 结果的可重复性:由于中值模糊是非线性操作,每次应用可能会产生稍微不同的结果。为了确保结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。

总结

iaa.MedianBlurimgaug库中一个非常有用的中值模糊增强器。它可以有效地消除图像中的椒盐噪声,并且在与其他增强器结合使用时,可以创造出丰富多样的图像效果。然而,使用时需要注意核大小的选择、计算效率、与其他增强器的结合使用以及结果的重复性等问题。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

这篇关于imgaug库指南(五):从入门到精通的【图像增强】之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575196

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编