LeGO-LOAM 几个特有函数的分析(2)

2024-01-05 21:36

本文主要是介绍LeGO-LOAM 几个特有函数的分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上回LeGO-LOAM 几个特有函数的分析(1)

二、广度优先遍历

广度优先遍历(Breadth-First Search, BFS)是一种用于遍历或搜索树或图的算法。这种算法从树的根(或图的某一指定节点)开始,然后探索邻近的节点,之后对每一个邻近的节点,它再去探索它们各自相邻的节点,这个过程持续进行直到访问所有可达的节点。

广度优先遍历的主要特点是它按照距离起始点的“层次”来遍历。首先访问距离起点最近的节点,然后是它们的邻居,如此类推。

2.1 广度优先遍历的步骤:

  1. 初始化:首先将起始节点放入队列中。

  2. 遍历

    • 从队列中弹出一个节点。
    • 检查该节点是否为目标节点。如果是,则完成搜索。
    • 将该节点的所有未访问过的邻居节点加入队列。
  3. 重复:重复步骤2,直到队列为空或找到目标节点。

  4. 结束:当队列为空且目标未找到,或已找到目标节点时,算法结束。

2.2基于 BFS 的点云聚类和外点剔除

2.2.1原理

 

 2.2.2源码注释

    void labelComponents(int row, int col){// use std::queue std::vector std::deque will slow the program down greatly// 声明所需的变量,输入的ROW和col是单帧点云第几行第几列的点// 用于存储距离和角度计算的临时变量float d1, d2, alpha, angle;// 用于存储索引的变量int fromIndX, fromIndY, thisIndX, thisIndY;// 标记是否每个扫描线都至少有一个点被添加bool lineCountFlag[N_SCAN] = {false};//用两个数组分别保存x,yqueueIndX[0] = row;queueIndY[0] = col;//算法标志int queueSize = 1;// 队列开始的索引int queueStartInd = 0;// 队列结束的索引int queueEndInd = 1;// 初始化聚类数组allPushedIndX[0] = row;allPushedIndY[0] = col;//计数int allPushedIndSize = 1;//很巧妙,有有效邻点就加一,每次循环减1,实现bfs广度优先遍历关键while(queueSize > 0){// Pop point// 取出当前点x,y坐标fromIndX = queueIndX[queueStartInd];fromIndY = queueIndY[queueStartInd];//队列大小减一--queueSize;//索引加一++queueStartInd;// Mark popped point// 标记该点为一类,聚类就是给点加标签,标签一致的就是一类labelMat.at<int>(fromIndX, fromIndY) = labelCount;// Loop through all the neighboring grids of popped grid// 检查所有邻点for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){// new index// 计算邻点的索引,其实就是上下左右四个点thisIndX = fromIndX + (*iter).first;thisIndY = fromIndY + (*iter).second;// index should be within the boundary// 如果raw为0或者15,上或者下没有邻点,跳过if (thisIndX < 0 || thisIndX >= N_SCAN)continue;// at range image margin (left or right side)//设置矩阵最两边的点也为邻点,因为VLP16是360度//在cow为0时左边的邻点,在1799if (thisIndY < 0)thisIndY = Horizon_SCAN - 1;//在cow为1799时左边的邻点,在0if (thisIndY >= Horizon_SCAN)thisIndY = 0;// prevent infinite loop (caused by put already examined point back)// 如果该点已被标记,则跳过if (labelMat.at<int>(thisIndX, thisIndY) != 0)continue;// 计算角度差以决定是否将邻点加入到当前区域// 距离雷达远的是D1,近的是D2d1 = std::max(rangeMat.at<float>(fromIndX, fromIndY),rangeMat.at<float>(thisIndX, thisIndY));d2 = std::min(rangeMat.at<float>(fromIndX, fromIndY), rangeMat.at<float>(thisIndX, thisIndY));//(0,-1),(0,1),意味着是一条线上的点,角度是360/1800*3.14/180=0.0035if ((*iter).first == 0)alpha = segmentAlphaX;else//(1,0),(-1,0),意味着是上下两条线上的点,角度是30/(16-1)*3.14/180=0.035alpha = segmentAlphaY;//计算图中angle角度angle = atan2(d2*sin(alpha), (d1 -d2*cos(alpha)));//如果角度大于60度if (angle > segmentTheta){//把此邻点放入队列queueIndX[queueEndInd] = thisIndX;queueIndY[queueEndInd] = thisIndY;//增加size++queueSize;//末尾索引右移++queueEndInd;//把此邻点赋上和之前取出来的点一样的标签labelMat.at<int>(thisIndX, thisIndY) = labelCount;//这行有点被标记过lineCountFlag[thisIndX] = true;//保存聚类结果allPushedIndX[allPushedIndSize] = thisIndX;allPushedIndY[allPushedIndSize] = thisIndY;++allPushedIndSize;}}}// check if this segment is validbool feasibleSegment = false;//如果聚类大于30则认为是一个好的聚类if (allPushedIndSize >= 30)feasibleSegment = true;//如果大于5,而且都是竖着的超过3个,也认为是一个好聚类,可能是树,电线杆else if (allPushedIndSize >= segmentValidPointNum){int lineCount = 0;for (size_t i = 0; i < N_SCAN; ++i)if (lineCountFlag[i] == true)++lineCount;if (lineCount >= segmentValidLineNum)feasibleSegment = true;            }// segment is valid, mark these points//如果聚类成功,标签加一if (feasibleSegment == true){++labelCount;}else{ // segment is invalid, mark these pointsfor (size_t i = 0; i < allPushedIndSize; ++i){//不成功,则标记为999999,代表依托答辩labelMat.at<int>(allPushedIndX[i], allPushedIndY[i]) = 999999;}}}
 需要注意的点:
一是 邻点的定义,就是代表取当前点上下左右四个点
std::pair<int8_t, int8_t> neighbor;
neighbor.first = -1; neighbor.second =  0; neighborIterator.push_back(neighbor);
neighbor.first =  0; neighbor.second =  1; neighborIterator.push_back(neighbor);
neighbor.first =  0; neighbor.second = -1; neighborIterator.push_back(neighbor);
neighbor.first =  1; neighbor.second =  0; neighborIterator.push_back(neighbor);
 二是 巧妙的通过queueSize 实现广度优先遍历算法的核心

开始是int queueSize =1,让其进入循环

while(queueSize > 0){//队列大小减一--queueSize;for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){//如果角度大于60度if (angle > segmentTheta){//增加size++queueSize;}}
}
三是 聚类时候,大于30个点,或者大于5个点,但是有三个竖着的聚为一类

我觉得原因是考虑到竖着的点距离远的因素

四是 通过计算角度来判断是否是邻点

想象一下,是不是D1越长,angle越小

2.3函数的调用

用此种方式实现了一帧雷达所有点的聚类

        for (size_t i = 0; i < N_SCAN; ++i)for (size_t j = 0; j < Horizon_SCAN; ++j)//上一个函数说过地面点label被置为1 //如果这个点既不是地面点也没有聚类过,开始聚类if (labelMat.at<int>(i,j) == 0)labelComponents(i, j);

这篇关于LeGO-LOAM 几个特有函数的分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/574232

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI