LeGO-LOAM 几个特有函数的分析(2)

2024-01-05 21:36

本文主要是介绍LeGO-LOAM 几个特有函数的分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上回LeGO-LOAM 几个特有函数的分析(1)

二、广度优先遍历

广度优先遍历(Breadth-First Search, BFS)是一种用于遍历或搜索树或图的算法。这种算法从树的根(或图的某一指定节点)开始,然后探索邻近的节点,之后对每一个邻近的节点,它再去探索它们各自相邻的节点,这个过程持续进行直到访问所有可达的节点。

广度优先遍历的主要特点是它按照距离起始点的“层次”来遍历。首先访问距离起点最近的节点,然后是它们的邻居,如此类推。

2.1 广度优先遍历的步骤:

  1. 初始化:首先将起始节点放入队列中。

  2. 遍历

    • 从队列中弹出一个节点。
    • 检查该节点是否为目标节点。如果是,则完成搜索。
    • 将该节点的所有未访问过的邻居节点加入队列。
  3. 重复:重复步骤2,直到队列为空或找到目标节点。

  4. 结束:当队列为空且目标未找到,或已找到目标节点时,算法结束。

2.2基于 BFS 的点云聚类和外点剔除

2.2.1原理

 

 2.2.2源码注释

    void labelComponents(int row, int col){// use std::queue std::vector std::deque will slow the program down greatly// 声明所需的变量,输入的ROW和col是单帧点云第几行第几列的点// 用于存储距离和角度计算的临时变量float d1, d2, alpha, angle;// 用于存储索引的变量int fromIndX, fromIndY, thisIndX, thisIndY;// 标记是否每个扫描线都至少有一个点被添加bool lineCountFlag[N_SCAN] = {false};//用两个数组分别保存x,yqueueIndX[0] = row;queueIndY[0] = col;//算法标志int queueSize = 1;// 队列开始的索引int queueStartInd = 0;// 队列结束的索引int queueEndInd = 1;// 初始化聚类数组allPushedIndX[0] = row;allPushedIndY[0] = col;//计数int allPushedIndSize = 1;//很巧妙,有有效邻点就加一,每次循环减1,实现bfs广度优先遍历关键while(queueSize > 0){// Pop point// 取出当前点x,y坐标fromIndX = queueIndX[queueStartInd];fromIndY = queueIndY[queueStartInd];//队列大小减一--queueSize;//索引加一++queueStartInd;// Mark popped point// 标记该点为一类,聚类就是给点加标签,标签一致的就是一类labelMat.at<int>(fromIndX, fromIndY) = labelCount;// Loop through all the neighboring grids of popped grid// 检查所有邻点for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){// new index// 计算邻点的索引,其实就是上下左右四个点thisIndX = fromIndX + (*iter).first;thisIndY = fromIndY + (*iter).second;// index should be within the boundary// 如果raw为0或者15,上或者下没有邻点,跳过if (thisIndX < 0 || thisIndX >= N_SCAN)continue;// at range image margin (left or right side)//设置矩阵最两边的点也为邻点,因为VLP16是360度//在cow为0时左边的邻点,在1799if (thisIndY < 0)thisIndY = Horizon_SCAN - 1;//在cow为1799时左边的邻点,在0if (thisIndY >= Horizon_SCAN)thisIndY = 0;// prevent infinite loop (caused by put already examined point back)// 如果该点已被标记,则跳过if (labelMat.at<int>(thisIndX, thisIndY) != 0)continue;// 计算角度差以决定是否将邻点加入到当前区域// 距离雷达远的是D1,近的是D2d1 = std::max(rangeMat.at<float>(fromIndX, fromIndY),rangeMat.at<float>(thisIndX, thisIndY));d2 = std::min(rangeMat.at<float>(fromIndX, fromIndY), rangeMat.at<float>(thisIndX, thisIndY));//(0,-1),(0,1),意味着是一条线上的点,角度是360/1800*3.14/180=0.0035if ((*iter).first == 0)alpha = segmentAlphaX;else//(1,0),(-1,0),意味着是上下两条线上的点,角度是30/(16-1)*3.14/180=0.035alpha = segmentAlphaY;//计算图中angle角度angle = atan2(d2*sin(alpha), (d1 -d2*cos(alpha)));//如果角度大于60度if (angle > segmentTheta){//把此邻点放入队列queueIndX[queueEndInd] = thisIndX;queueIndY[queueEndInd] = thisIndY;//增加size++queueSize;//末尾索引右移++queueEndInd;//把此邻点赋上和之前取出来的点一样的标签labelMat.at<int>(thisIndX, thisIndY) = labelCount;//这行有点被标记过lineCountFlag[thisIndX] = true;//保存聚类结果allPushedIndX[allPushedIndSize] = thisIndX;allPushedIndY[allPushedIndSize] = thisIndY;++allPushedIndSize;}}}// check if this segment is validbool feasibleSegment = false;//如果聚类大于30则认为是一个好的聚类if (allPushedIndSize >= 30)feasibleSegment = true;//如果大于5,而且都是竖着的超过3个,也认为是一个好聚类,可能是树,电线杆else if (allPushedIndSize >= segmentValidPointNum){int lineCount = 0;for (size_t i = 0; i < N_SCAN; ++i)if (lineCountFlag[i] == true)++lineCount;if (lineCount >= segmentValidLineNum)feasibleSegment = true;            }// segment is valid, mark these points//如果聚类成功,标签加一if (feasibleSegment == true){++labelCount;}else{ // segment is invalid, mark these pointsfor (size_t i = 0; i < allPushedIndSize; ++i){//不成功,则标记为999999,代表依托答辩labelMat.at<int>(allPushedIndX[i], allPushedIndY[i]) = 999999;}}}
 需要注意的点:
一是 邻点的定义,就是代表取当前点上下左右四个点
std::pair<int8_t, int8_t> neighbor;
neighbor.first = -1; neighbor.second =  0; neighborIterator.push_back(neighbor);
neighbor.first =  0; neighbor.second =  1; neighborIterator.push_back(neighbor);
neighbor.first =  0; neighbor.second = -1; neighborIterator.push_back(neighbor);
neighbor.first =  1; neighbor.second =  0; neighborIterator.push_back(neighbor);
 二是 巧妙的通过queueSize 实现广度优先遍历算法的核心

开始是int queueSize =1,让其进入循环

while(queueSize > 0){//队列大小减一--queueSize;for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){//如果角度大于60度if (angle > segmentTheta){//增加size++queueSize;}}
}
三是 聚类时候,大于30个点,或者大于5个点,但是有三个竖着的聚为一类

我觉得原因是考虑到竖着的点距离远的因素

四是 通过计算角度来判断是否是邻点

想象一下,是不是D1越长,angle越小

2.3函数的调用

用此种方式实现了一帧雷达所有点的聚类

        for (size_t i = 0; i < N_SCAN; ++i)for (size_t j = 0; j < Horizon_SCAN; ++j)//上一个函数说过地面点label被置为1 //如果这个点既不是地面点也没有聚类过,开始聚类if (labelMat.at<int>(i,j) == 0)labelComponents(i, j);

这篇关于LeGO-LOAM 几个特有函数的分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/574232

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe