行人重识别:reid-strong-baseline-master(罗浩)---triplet_sampler.py(数据加载,迭代器构建)

本文主要是介绍行人重识别:reid-strong-baseline-master(罗浩)---triplet_sampler.py(数据加载,迭代器构建),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        首先,reid-strong-baseline代码是罗浩博士在CVPR2019发表的《Bag of Tricks and A Strong Baseline for Deep Person Re-identification》,相关代码链接如下:https://github.com/michuanhaohao/reid-strong-baseline。这篇论文对我启发蛮大,也是我入门的基础。我也是小白,代码功底也不是很好,入门比较慢,目前正在研读他的代码。我的代码是在market1501数据集上跑的。

以下所阐述的内容是从以下博客学习来的基于度量学习的ReID代码实现(1)和行人重识别02-06:fast-reid(BoT)-pytorch编程规范(fast-reid为例)3-迭代器构建,数据加载-1。它们对我启发很大。

一、triplet_sampler.py具体位置

        在reid-strong-baseline-master/tools/train.py文件中找到train函数的make_data_loader函数。

         make_data_loader函数在reid-strong-baseline-master/data/build.py文件中,然后在该函数找到RandomIdentitySampler类。

        RandomIdentifySampler类是在reid-strong-baseline-master/data/samplers/triplet_sampler.py文件中。

 二、triplet_sampler.py解析

注释如下:

"""
@author:  liaoxingyu
@contact: liaoxingyu2@jd.com
"""import copy
import random
import torch
from collections import defaultdictimport numpy as np
from torch.utils.data.sampler import Samplerclass RandomIdentitySampler(Sampler):"""【首先随机采集N个ID,然后每个ID选择K个实例图像】Randomly sample N identities, then for each identity,randomly sample K instances, therefore batch size is N*K.Args:【训练数据的列表,包含了所有训练的数据,也就是多个数据源】- data_source (list): list of (img_path, pid, camid).【在每个batch中,对每个ID采集num_instances图像】- num_instances (int): number of instances per identity in a batch.- batch_size (int): number of examples in a batch."""def __init__(self, data_source, batch_size, num_instances):# 【包含了多个数据集的训练信息,例如图片路径,身份ID,摄像头编号等】self.data_source = data_sourceself.batch_size = batch_size# 【对每个身份采集的图像数目,本文设置(num_instances=4)】self.num_instances = num_instances# 【通过计算获得每个batch需要采集多少个身份ID,16=64/4】self.num_pids_per_batch = self.batch_size // self.num_instances# 【(写了一个dic,dic的key是id,value是各id对应的图片序号)用于存储该图片 序列号 保存于字典,方便查找转换】self.index_dic = defaultdict(list)# 【循环把(key:id==>行人的id,即pid)(value:各个id对应的图片序号)数据保存上述字典中】for index, (_, pid, _) in enumerate(self.data_source):self.index_dic[pid].append(index)# 【把index_dic的键值(身份ID)保存于self.pids中】self.pids = list(self.index_dic.keys())# estimate number of examples in an epochself.length = 0for pid in self.pids:idxs = self.index_dic[pid]num = len(idxs)if num < self.num_instances:num = self.num_instancesself.length += num - num % self.num_instances# 【iter返回的是一个epoch的数据,是一个list】def __iter__(self):batch_idxs_dict = defaultdict(list)for pid in self.pids:idxs = copy.deepcopy(self.index_dic[pid])if len(idxs) < self.num_instances:idxs = np.random.choice(idxs, size=self.num_instances, replace=True)random.shuffle(idxs)batch_idxs = []for idx in idxs:batch_idxs.append(idx)if len(batch_idxs) == self.num_instances:batch_idxs_dict[pid].append(batch_idxs)batch_idxs = []avai_pids = copy.deepcopy(self.pids)final_idxs = []while len(avai_pids) >= self.num_pids_per_batch:selected_pids = random.sample(avai_pids, self.num_pids_per_batch)for pid in selected_pids:batch_idxs = batch_idxs_dict[pid].pop(0)final_idxs.extend(batch_idxs)if len(batch_idxs_dict[pid]) == 0:avai_pids.remove(pid)self.length = len(final_idxs)return iter(final_idxs)def __len__(self):return self.length

1.def __init__()函数中的data_source包含很多信息,调试结果如图:

 2.def __init__()函数中的num_pids_per_batch参数,很重要:

 3.def __init__()函数中for index,(_,pid,_) in enumerate(self.data_source)的解释:

        首先,通过for循环将行人id存储在字典里,调试后可看到index_dic字典内容:

【注:pid从0开始,750结束,pid一共751个,即751个人】

 更加直观从数据集看:

4.def __init__()函数中self.pids = list(self.index_dic.keys())调试如下:

 5.def __init__()函数中RandomIdentitySampler最终取到的值:

目录

一、triplet_sampler.py具体位置

 二、triplet_sampler.py解析


这篇关于行人重识别:reid-strong-baseline-master(罗浩)---triplet_sampler.py(数据加载,迭代器构建)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572016

相关文章

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

如何正确识别一台POE交换机的好坏? 选购可靠的POE交换机注意事项

《如何正确识别一台POE交换机的好坏?选购可靠的POE交换机注意事项》POE技术已经历多年发展,广泛应用于安防监控和无线覆盖等领域,需求量大,但质量参差不齐,市场上POE交换机的品牌繁多,如何正确识... 目录生产标识1. 必须包含的信息2. 劣质设备的常见问题供电标准1. 正规的 POE 标准2. 劣质设

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池