摘要抽取算法——最大边界相关算法MMR(Maximal Marginal Relevance) 实践

本文主要是介绍摘要抽取算法——最大边界相关算法MMR(Maximal Marginal Relevance) 实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NLP(自然语言处理)领域一个特别重要的任务叫做——文本摘要自动生成。此任务的主要目的是快速的抽取出一篇文章的主要内容,这样读者就能够通过最少的文字,了解到文章最要想表达的内容。由于抽取出来的摘要表达出了文章最主要的含义,所以在做长文本分类任务时,我们可以采用文本摘要算法将长文本的摘要抽取出来,在采用短文本分类模型去做文本分类,有时会起到出奇的好效果。

文本摘要自动生成算法

文本摘要抽取算法主要分为两大类:

  • 一种是生成式:生成式一般采用的是监督式学习算法,最常见的就是sequence2sequence模型,需要大量的训练数据。生成式的优点是模型可以学会自己总结文章的内容,而它的缺点是生成的摘要可能会出现语句不通顺的情况。
  • 另一种是抽取式:常见的算法是 textrank,MMR(Maximal Marginal Relevance),当然也可以采用深度学习算法。抽取式指的摘要是从文章中抽出一些重要的句子,代表整篇文章的内容。抽取式的优点是生成的摘要不会出现语句不通顺的情况,而它的缺点是缺乏文本总结能力,生成的摘要可能出现信息丢失的情况。

最大边界相关算法MMR(Maximal Marginal Relevance)

MMR算法又叫最大边界相关算法,此算法在设计之初是用来计算Query文本与被搜索文档之间的相似度,然后对文档进行rank排序的算法。算法公式如下:

其中 Q 是 Query文本,C 是被搜索文档集合,R是一个已经求得的以相关度为基础的初始集合,

Arg \max_{d_i in, C}^{k}[*]指的是搜索返回的K个的句子的索引。

当我们做摘要抽取时,我们需要换个角度去看公式中的字符表示,在摘要抽取时:

  • 公式中的 Q和C 都代表整篇文档。
  • 而 d_i 则代表文档中的某个句子。
  • 公式中的   \lambda sim(Q,d_i)指的是文档中的某个句子和整篇文档的相似度
  • \left ( 1-\lambda \right ) \max_{d_jik}\left ( sim\left ( d_i,d_j \right ) \right )指的是 文档中的某个句子和已经抽取的摘要句子的相似度

仔细观察下公式方括号中的两项,其中前一项的物理意义指的是待抽取句子和整篇文档的相似程度,后一项指的是待抽取句子和已得摘要的相似程度,通过减号相连,其含义是希望:抽取的摘要既能表达整个文档的含义,有具备多样性 。而

\lambda  则是控制摘要多样性程度的一个超参数,你可以根据自己的需求去调节。

MMR摘要抽取算法python实现

使用sklearn 的 CountVectorizer 接口计算句子的词袋向量,然后定义余弦相识度函数计算句子和文档直接相似度,最后实现MMR算法。

 

from sklearn.feature_extraction.text import CountVectorizer
from pprint import pprint
import operatordef encode_sen(sen,corpus):"""input: sentence and corpus output :  bag of words vector of sentence """cv = CountVectorizer()cv = cv.fit(corpus)vec = cv.transform([sen]).toarray()return vec[0]def cosin_distance(vector1, vector2):"""input: two bag of words vectors of sentence  output :  the similarity between the sentence"""dot_product = 0.0normA = 0.0normB = 0.0for a, b in zip(vector1, vector2):dot_product += a * bnormA += a ** 2normB += b ** 2if normA == 0.0 or normB == 0.0:return Noneelse:return dot_product / ((normA * normB) ** 0.5)def doc_list2str(doc_list):"""transform the doc_list to str """docu_str = ""for wordlist in doc_list:docu_str += " ".join(wordlist)return docu_strdef MMR(doc_list,corpus):"""input :corpus and the docment you want to extract output :the abstract of the docment """Corpus = corpusdocu = doc_list2str(doc_list)doc_vec = encode_sen(docu,Corpus)QDScore = {}###calculate the  similarity of every sentence with the whole corpusfor sen in doc_list:sen = " ".join(sen)sen_vec = encode_sen(sen,corpus)score = cosin_distance(sen_vec,doc_vec)QDScore[sen] = scoren = 2alpha = 0.7Summary_set = []while n > 0:MMRScore = {}### select the first sentence of abstractif Summary_set == []:selected = max(QDScore.items(), key=operator.itemgetter(1))[0]Summary_set.append(selected)Summary_set_str = " ".join(Summary_set)for sentence in QDScore.keys():#calculate MMR  if sentence not in Summary_set:sum_vec = encode_sen(Summary_set_str, corpus)sentence_vec = encode_sen(sentence,corpus)MMRScore[sentence] = alpha * QDScore[sentence] - (1 - alpha) * cosin_distance(sentence_vec,sum_vec)selected = max(MMRScore.items(), key=operator.itemgetter(1))[0]Summary_set.append(selected)n -= 1# print(len(Summary_set))return  Summary_set

测试MMR算法

在网上找了一个关于2018年世界杯后姆巴佩转会巴黎的新闻,进行摘要抽取。

 

import jieba
docment = "伴随着世界杯的落幕,俱乐部联赛筹备工作又成为主流,转会市场必然也会在世界杯的带动下风起云涌,不过对于在本届赛事上大放异彩的姆巴佩而言,大巴黎可以吃一颗定心丸,世界杯最佳新秀已经亲自表态:留在巴黎哪里也不去。在接受外媒采访时,姆巴佩表达了继续为巴黎效忠的决心。“我会留在巴黎,和他们一起继续我的路途,我的职业生涯不过刚刚开始”,姆巴佩说道。事实上,在巴黎这座俱乐部,充满了内部的你争我夺。上赛季,卡瓦尼和内马尔因为点球事件引发轩然大波,而内马尔联合阿尔维斯给姆巴佩起“忍者神龟”的绰号也让法国金童十分不爽,为此,姆巴佩的母亲还站出来替儿子解围。而早在二月份,一场与图卢兹的比赛,内马尔也因为传球问题赛后和姆巴佩产生口角。由此可见,巴黎内部虽然大牌云集,但是气氛并不和睦。内马尔离开球队的心思早就由来已久,而姆巴佩也常常与其它俱乐部联系在一起,在躲避过欧足联财政公平法案之后,巴黎正在为全力留下二人而不遗余力。好在姆巴佩已经下定决心,这对巴黎高层而言,也算是任务完成了一半。本届世界杯上,姆巴佩星光熠熠,长江后浪推前浪,大有将C罗、梅西压在脚下的趋势,他两次追赶贝利,一次是在1/8决赛完成梅开二度,另一次是在世界杯决赛中完成锁定胜局的一球,成为不满20岁球员的第二人。另外他在本届赛事中打进了4粒入球,和格列兹曼并列全队第一。而对巴黎而言,他们成功的标准只有一条:欧冠。而留下姆巴佩,可以说在争夺冠军的路上有了仰仗,卡瓦尼在本届世界杯同样表现不错,内马尔虽然内心波澜,但是之前皇马官方已经辟谣没有追求巴西天王,三人留守再度重来,剩下的就是图赫尔的技术战术与更衣室的威望,对图赫尔而言,战术板固然重要,但是德尚已经为他提供了更加成功的范本,像团结法国队一样去团结巴黎圣日耳曼,或许这才是巴黎取胜的钥匙。"
sen_list = docment.strip().split("。")
sen_list.remove("")
doc_list = [jieba.lcut(i) for i in sen_list]
corpus = [" ".join(i) for i in doc_list]

corpus

结果如下:从抽取的摘要基本可以得知本篇报道主要是想说明世界杯后姆巴佩将转化巴黎,而且可能性很大。和全文主要想表达的含义基本吻合。证明MMR算法确实厉害。

 

MMR(doc_list,corpus)

abstract

结语

这里笔者只是简单的介绍了MMR摘要算法的原理,以及简单实现。代码部分也不是此算法的最优实现。真正能够落地的摘要算法,一定是融合了更多的其他思想,如textrank,文本句子和标题的相似度,或者引入词向量或者句子向量来更好的表达句子语义等等。本文只是想让大家初步了解摘要算法的一些知识,以及感受一下摘要算法的神奇之处。

这篇关于摘要抽取算法——最大边界相关算法MMR(Maximal Marginal Relevance) 实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571372

相关文章

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可