优雅地展示20w单细胞热图|非Doheatmap 超大数据集 细胞数太多

本文主要是介绍优雅地展示20w单细胞热图|非Doheatmap 超大数据集 细胞数太多,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单细胞超大数据集的热图怎么画?昨天刚做完展示20万单细胞的热图要这么画吗? 今天就有人发消息问我为啥他画出来的热图有问题。

问题起源

昨天分享完  20万单细胞的热图要这么画吗?,就有人问为啥他的数据会出错。我们先来看下他的数据

  • 数据输入部分

cluster_gene_stat=FindAllMarkers(d.all,only.pos = TRUE,logfc.threshold = 0.4)head(cluster_gene_stat)table(cluster_gene_stat$cluster)DimPlot(d.all)d.all$orig.ident=Idents(d.all)table(d.all$orig.ident)Idents(d.all)=paste0('cluster',d.all$orig.ident)a=AverageExpression(d.all,return.seurat = TRUE)a$orig.ident=rownames(a@meta.data)head(a@meta.data)head(markers)markers=cluster_gene_statDoHeatmap(a,draw.lines = FALSE, slot = 'scale.data',assay = 'SCT',          features = markers %>%group_by(cluster) %>%dplyr::slice_max(avg_log2FC,n = 5) %>% .$gene )
  • 画图所需数据

他画出来的图是这样:

markers$cluster=paste0("cluster",markers$cluster)markers$cluster=factor(markers$cluster,levels = unique(markers$cluster))DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data',assay = 'SCT',          features = markers %>%group_by(cluster) %>%dplyr::slice_max(avg_log2FC,n = 5) %>% .$gene )

  • 和我的图20万单细胞的热图要这么画吗? 区别在于没有列名,图注也不完整,且热图色块是乱序的


解决方法

  • 1. 方倒是简单,重新添加列名即可添加即可

Idents(d.all)=paste0('cluster',d.all$orig.ident)a=AverageExpression(d.all,return.seurat = TRUE)a$orig.ident=rownames(a@meta.data)DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data',      assay = 'SCT',group.by = 'orig.ident',          features = markers %>%group_by(cluster) %>%dplyr::slice_max(avg_log2FC,n = 5) %>% .$gene )

  • 2. 调整因子顺序,让热图中的色块更好看些

markers$cluster=factor(markers$cluster,levels = paste0('cluster',seq(0,8,1)) )head(markers)head(a@meta.data)DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data',assay = 'SCT',group.by = 'orig.ident',          features = markers %>%group_by(cluster) %>%dplyr::slice_max(avg_log2FC,n = 5) %>% .$gene )

但是你会发现 右边地图注少了cluster8。

为什么cluster8会缺失?我觉得这是bug,盲猜可能由于markers内的cluster8对应地基因在a里是na


  • 3. 自己手动添加图注cluster8即可

DoHeatmap(a,features =  markers %>%group_by(cluster) %>%dplyr::slice_max(avg_log2FC,n = 5) %>% .$gene,          draw.lines = FALSE,group.by = 'orig.ident') +  ggplot2:: scale_color_discrete(name = "Identity", labels =  paste0('cluster',seq(0,8,1))  )

  • 3. 如果热图中想多加几个基因的话 

DoHeatmap(a,features =  markers %>%group_by(cluster) %>%dplyr::slice_max(avg_log2FC,n = 15) %>% .$gene,          draw.lines = FALSE,group.by = 'orig.ident') +  ggplot2:: scale_color_discrete(name = "Identity", labels =  paste0('cluster',seq(0,8,1))  )

只能这样了,这里所有热图都挺丑的,瘸子里面选巧匠吧


画外音:

这种热图不好看的根本原因在于数据的问题。提示我们需要合并、删除某些cluster,然后再来画热图会更好看。

如果你不会合并、删除某些cluster。可以先看看我之前的直播:

直播四-单细胞个性化注释、细分亚群并把细分亚群放回总群

如果还是不懂,找机会再直播一次~


这篇关于优雅地展示20w单细胞热图|非Doheatmap 超大数据集 细胞数太多的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569805

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,